• Title/Summary/Keyword: compiled rules

Search Result 21, Processing Time 0.016 seconds

Evaluation of the Measurement Uncertainty from the Standard Operating Procedures(SOP) of the National Environmental Specimen Bank (국가환경시료은행 생태계 대표시료의 채취 및 분석 표준운영절차에 대한 단계별 측정불확도 평가 연구)

  • Lee, Jongchun;Lee, Jangho;Park, Jong-Hyouk;Lee, Eugene;Shim, Kyuyoung;Kim, Taekyu;Han, Areum;Kim, Myungjin
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.6
    • /
    • pp.607-618
    • /
    • 2015
  • Five years have passed since the first set of environmental samples was taken in 2011 to represent various ecosystems which would help future generations lead back to the past environment. Those samples have been preserved cryogenically in the National Environmental Specimen Bank(NESB) at the National Institute of Environmental Research. Even though there is a strict regulation (SOP, standard operating procedure) that rules over the whole sampling procedure to ensure each sample to represent the sampling area, it has not been put to the test for the validation. The question needs to be answered to clear any doubts on the representativeness and the quality of the samples. In order to address the question and ensure the sampling practice set in the SOP, many steps to the measurement of the sample, that is, from sampling in the field and the chemical analysis in the lab are broken down to evaluate the uncertainty at each level. Of the 8 species currently taken for the cryogenic preservation in the NESB, pine tree samples from two different sites were selected for this study. Duplicate samples were taken from each site according to the sampling protocol followed by the duplicate analyses which were carried out for each discrete sample. The uncertainties were evaluated by Robust ANOVA; two levels of uncertainty, one is the uncertainty from the sampling practice, and the other from the analytical process, were then compiled to give the measurement uncertainty on a measured concentration of the measurand. As a result, it was confirmed that it is the sampling practice not the analytical process that accounts for the most of the measurement uncertainty. Based on the top-down approach for the measurement uncertainty, the efficient way to ensure the representativeness of the sample was to increase the quantity of each discrete sample for the making of a composite sample, than to increase the number of the discrete samples across the site. Furthermore, the cost-effective approach to enhance the confidence level on the measurement can be expected from the efforts to lower the sampling uncertainty, not the analytical uncertainty. To test the representativeness of a composite sample of a sampling area, the variance within the site should be less than the difference from duplicate sampling. For that, a criterion, ${i.e.s^2}_{geochem}$(across the site variance) <${s^2}_{samp}$(variance at the sampling location) was proposed. In light of the criterion, the two representative samples for the two study areas passed the requirement. In contrast, whenever the variance of among the sampling locations (i.e. across the site) is larger than the sampling variance, more sampling increments need to be added within the sampling area until the requirement for the representativeness is achieved.