• Title/Summary/Keyword: compensator.

Search Result 1,347, Processing Time 0.032 seconds

Fuzzy Control with Feedforward Compensator of Superheat in a Variable Speed Refrigeration System

  • Hua, Li;Lee, Dong-Woo;Jeong, Seok-Kwon;Yoon, Jung-In
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.252-262
    • /
    • 2007
  • In this paper, we suggest fuzzy control with feedforward compensator of superheat to progress both energy saving and coefficient of performance(COP) in a variable speed refrigeration system. The capacity and superheat are controlled simultaneously and independently by an inverter and an electronic expansion valve respectively for saving energy and improving COP in the system. By adopting the fuzzy control. the controller design for the capacity and superheat is possible without depending on a dynamic model of the system. Moreover, the feedforward compensator of the superheat can eliminate influence of the interfering loop between capacity and superheat. Some experiments are conducted to design the appropriate fuzzy controller by an iteration manner. The results show that the proposed fuzzy controller with the compensator can establish good control performances for the complicated refrigeration system with inherent strong non-linearity.

Sliding Mode Control with Fuzzy Adaptive Perturbation Compensator for 6-DOF Parallel Manipulator

  • Park, Min-Kyu;Lee, Min-Cheol;Yoo, Wan-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.535-549
    • /
    • 2004
  • This paper proposes a sliding mode controller with fuzzy adaptive perturbation compensator(FAPC) to get a good control performance and reduce the chatter, The proposed algorithm can reduce the chattering because the proposed fuzzy adaptive perturbation compensator compensates the perturbation terms. The compensator computes the control input for compensating unmodeled dynamic terms and disturbance by using the observer-based fuzzy adaptive network(FAN) The weighting parameters of the compensate. are updated by on-line adaptive scheme in order to minimize the estimation error and the estimation velocity error of each actuator. Therefore, the combination of sliding mode control and fuzzy adaptive network gives the robust and intelligent routine to get a good control performance. To evaluate the control performance of the proposed approach, tracking control is experimentally carried out for the hydraulic motion platform which consists of a 6-DOF parallel manipulator.

Technique for the Prevention of Inrush Current in a TCC Reactive Power Compensator

  • Yang, Ji-Hoon;Song, Sung-Geun;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.4
    • /
    • pp.149-158
    • /
    • 2018
  • With the propagation and spread of the new regeneration energy and increase in electricity demand, power systems tend to be decentralized, and accordingly, the use of a power system stabilizer tends to expand for the stabilization of the distribution system. Thus, typical power system stabilizer, Static Var Compensator (SVC) is developed on a variety of topologies. In addition, the trend of technology leads from SVC to Static Synchronous Compensator(STATCOM) technology development. Recently, to overcome STATCOM's conversion losses and economic disadvantages, studies of a hybrid method using STATCOM and SVC in parallel have actively been conducted. This study proposes a new Soft-Step Switching method to limit inrush current problematic in Thyristor Controlled Capacitor (TCC) method in SVC function. In addition, to reduce Statcom's capacity, groups of reactive power compensation reactor and condenser for SVC were designed.

Study on Small Power Quality Compensator Installable at Home Power Inlet (주택인입구에 설치 가능한 소형전력품질보상장치에 관한 연구)

  • Jon Young-Soo;Choi Jun-Young;Han Byung-Moon;Han Hoo-Sek
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.2
    • /
    • pp.53-58
    • /
    • 2006
  • This paper proposes a small low-cost power quality compensator to be installed at the electricity supply inlet of residential customer. The compensator is composed of a single-phase active power filter with a simple controller using analog electronics, which can correct the power factor and damp out the harmonics. The operation and performance of proposed compensator was verified through simulations with PSCAD/EMTDC and experimental works with hardware prototype. The proposed compensator can offer reduction of power loss and improvement of power quality to the residential customer.

Position Control of a Pneumatic Cylinder with a Nonlinear Compensator and a Disturbance Observer (비선형 보상기와 외란관측기를 이용한 공기압 실리더의 위치제어)

  • Jang, Ji-Seong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1795-1805
    • /
    • 2002
  • A position controller which can achieve a specified dynamic performance irrespective of the different operating position of the pneumatic cylinder is proposed. The position controller developed in this paper is composed of a nonlinear compensator and a disturbance observer. The nonlinear compensator which feeds back position, velocity and acceleration is derived from the nonlinear dominating equations of the position control system to compensate for variation of dynamic characteristics of a pneumatic cylinder according to the change of the operating position. The disturbance observer including a simplified linear model is designed to reduce the effect of model discrepancy in the low frequency range which cannot be suppressed by the nonlinear compensator. The results of the experiments show that the position control performance maintains a designed performance regardless of the variations of an operating position of the pneumatic cylinder.

Compensating Characteristics of Voltage Sag Compensator Utilizing Single-Phase Matrix Converter

  • Yamamoto, Kichiro;Ikeda, Keisuke;Iimori, Kenichi
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.77-82
    • /
    • 2013
  • By using simulation, compensating characteristics of a voltage sag compensator utilizing single-phase matrix converter is examined. System configuration is described and mathematical model of single-phase matrix converter is derived by using the state space averaging method. In addition, the single-phase matrix converter is stabilized by phase-lead compensation. Finally, compensating characteristics of the compensator is investigated for 500 W R-L load and it is demonstrated that the compensator can operate correctly for loads for the range of power factor 0.6 (lagging) - 0.8 (leading) and for up to 50% voltage sag.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

A New Control Scheme for Unified Power Quality Compensator-Q with Minimum Power Injection

  • Lee, Woo-Cheol
    • Journal of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.72-80
    • /
    • 2007
  • Voltage sags are one of the most frequently occurring power quality problems challenging power systems today. The Unified Power Quality Conditioner (UPQC) is one of the major custom power solutions that are capable of mitigating the effect of supply voltage sags at the load or Point of Common Coupling (PCC). A UPQC-Q employs a control method in which the series compensator injects a voltage that leads the supply current by $90^{\circ}C$ so that the series compensator at steady state consumes no active power. However, the UPQC-Q has the disadvantage that its series compensator needs to be overrated. Thus it cannot offer effective compensation. This paper proposes a new control scheme for the UPQC-Q that offers minimum power injection. The proposed minimum power injection method takes into consideration the limits on the rated voltage capacity of the series compensator and its control scheme. The validity of the proposed control scheme is investigated through simulation and experimental results.

A STUDY ON SIMPLE TIME VARYING FEEDFORWARD COMPENSATOR

  • Kwon, Byung-Moon;Son, Won-Kee;Kwon, Oh-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.500-500
    • /
    • 2000
  • In this paper, we deal wit,11 a simple tim varying feedforward compensator in order to decrease the amount of undershoots and overshoots on the step response. This compensator makes the step type input be a ramp input with saturation for 0 $\leq$ t < $\alpha$. It will be shown that the system with the feedforward compensator has small amount of undershoot and overshoot at the price of rise time. Also, provided the system properly stable, the influence of the design parameter $\alpha$ on the step response of the system with the feedforward compensator is investigated in the current paper.

  • PDF

Algebraic compensator design for dynamic systems using a novel BPF transformation method (새로운 BPF 변환식을 이용한 동적 시스템의 대수적 보상기 설계)

  • Ahn, P.;Kim, M.H.;Kim, J.B.;Lee, J.C.;Oh, M.H.;Ahn, D.S.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.595-597
    • /
    • 1998
  • This paper deals with an algebraic compensator design for dynamic systems using a novel BPF transformation method. To obtain an algebraic compensator for the system, block pulse function's differential operation is used. Compare to unalgebraic compensator, proposed algebraic compensator is less sensitive to the measurement noise.

  • PDF