• Title/Summary/Keyword: compensation scheme

Search Result 645, Processing Time 0.029 seconds

Fault Detection and Isolation Scheme for Inverted Pendulum Control System (역진자 제어계의 고장검출식별 기법)

  • Lee, Sang-Moon;Ryu, Ji-Su;Lee, Kee-Sang;Park, Tae-Geon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2227-2229
    • /
    • 2004
  • Fault Detection and Isolation(FDI) schemes using unknown input functional observers with very low order are presented. These schemes resolve the major practical difficulties with all FDI systems employing multiple observers for residual generation and can be implemented by the use of microprocessors that are normally used in commercial processes mainly due to the simplicity of the residual generation block. Various design objectives including detection, isolation, estimation and compensation of instrument fault/or process fault are achievable with these schemes. The proposed FDI scheme is applied to an inverted pendulum control system for instrument fault detection.

  • PDF

A Learning Controller for Gate Control of Biped Walking Robot using Fourier Series Approximation

  • Lim, Dong-cheol;Kuc, Tae-yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.85.4-85
    • /
    • 2001
  • A learning controller is presented for repetitive walking motion of biped robot. The learning control scheme learns the approximate inverse dynamics input of biped walking robot and uses the learned input pattern to generate an input profile of different walking motion from that learnt. In the learning controller, the PID feedback controller takes part in stabilizing the transient response of robot dynamics while the feedforward learning controller plays a role in computing the desired actuator torques for feedforward nonlinear dynamics compensation in steady state. It is shown that all the error signals in the learning control system are bounded and the robot motion trajectory converges to the desired one asymptotically. The proposed learning control scheme is ...

  • PDF

Design of an Offset-Compensated Low-Voltage Rail-to-Rail CMOS Opamp with Ping-Pong Control (Ping-Pong Control을 사용한 옵셋보상된 저전압 Rail-to-Rail CMOS 증폭회로 설계)

  • 이경일;오원석;박종태;유종근
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.12
    • /
    • pp.40-48
    • /
    • 1998
  • An offset compensation scheme for rail-to-rail CMOS op-amps with complementary input stages is presented. Two auxiliary amplifiers are used to compensate for the offsets of NMOS and PMOS differential input stages, and ping-pong control is employed for continuous-time operation. A 3V offset-compensated rail-to-rail CMOS op-amp has been designed and fabricated using a 0.8$\mu\textrm{m}$ single-poly, double-metal CMOS process. Measurement results show that offsets are reduced about 20 times by this scheme.

  • PDF

Sensorless Speed Control of Induction Motor by Direct Torque Control with Numerical Model (수식모델의 직접토크제어에 의한 유도전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.830-836
    • /
    • 2012
  • Various control algorithms have been proposed for the speed-sensorless control for an induction motor. These control schemes are mainly based on the speed feedback with the flux and speed estimations. This paper proposes another method for the speed-sensorless control for an induction motor. The proposed scheme is based on the torque and flux compensation without speed estimations, in which the same controlled stator voltage is applied to both the induction motor and the numerical model so that the differences between torques and fluxes of the model and the induction motor may be compelled to give access to zero. The results of experiment show the effectiveness of the scheme.

Friction Compensation of X-Y robot Using a Learning Control Technique (학습제어기법을 이용한 X-Y Table의 마찰보상)

  • Sohn, Kyoung-Oh;Kuc, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.248-255
    • /
    • 2000
  • Whereas the linear PID controller is widely used for control of industrial servo systems a high precision positioning system is not easy to control only with the PID controller due to uncertain nonlinear dynamics such as friction backlash etc. As a viable means to overcome the difficulty a learning control scheme is proposed in this paper that is simple and straightforward to implement. The proposed learning controller takes full advantage of current feedback capability of the inner-loop of the control system in that electrical motor dynamics as the well as mechanical part of X-Y positioning system is included in the learning control scheme, The experimental results are given to demonstrate its feasibility and effectiveness in terms of convergence precision of tracking and robustness in comparison with the conventional control method.

  • PDF

Fault Tolerant Control for Nonlinear Boiler System (비선형 보일러 시스템에서의 이상허용제어)

  • Yoon, Seok-Min;Kim, Dae-Woo;Lee, Myung-Eui;Kwon, O-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.254-260
    • /
    • 2000
  • This paper deals with the development of fault tolerant control for a nonlinear boiler system with noise and disturbance. The MCMBPC(Multivariable Constrained Model Based Predictive Control) is adopted for the control of the specific boiler turbin model. The fault detection and diagnosis are accomplished with the Kalman filter and two bias estimators. Once a fault is detected, two Bias estimators are driven to estimate the fault and to discriminate Process fault and sensor fault. In this paper, a fault tolerant control scheme combining MCMBPC with a fault compensation method based on the bias estimator is proposed. The proposed scheme has been applied to the nonlinear boiler system and shown a satisfactory performance through some simulations.

  • PDF

Robust Control against Voltage Source Variation for PWM Converters of the High Speed Traction (고속철도 차량용 PWM 컨버터의 전원전압 변동에 강인한 제어)

  • Park, Byoung-Gun;Lee, Woo-Cheol;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1271-1278
    • /
    • 2010
  • High-speed traction has voltage source variation because the electric power of tractions is supplied by difference traction power system according to operating section. This paper proposes the robust control maintaining constant output performance against voltage source variation for PWM converters of the high speed traction. The proposed scheme consists of feed-forward compensation for current controller by on-line calculating the rms voltage of voltage source. Total dynamic performance of high speed traction can be improved by the reduction of the output voltage ripple which is resulted from voltage source sag and variation. The superior performance and validity of the proposed scheme is proved through the simulation.

  • PDF

Unified Active Power Filter Compensating For Source Voltage Unbalance/Current Harmonics and Power Factor Simultaneously (전원 전압의 불평형과 고조파 전류 및 역률을 동시에 보상하는 통합형 능동 전력필터)

  • Lee, Jong-Kun;Seok, Jul-Ki;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.103-105
    • /
    • 2004
  • In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics and power factor simultaneously in unified active power filter systems combined with shunt passive filters is proposed, where no low/high-pass filter are used in deriving the reference voltage for compensation. Using digital all-pass filters, the phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage. The amplitude of d-axis current in a series filter is controlled as zero for power factor correction. The validity of the proposed control scheme has been verified by experimental results.

  • PDF

Time Delay Compensation of Induction Motor Vector Control System (유도전동기 벡터제어 시스템의 시간지연 보상)

  • 박철우;최연호;임성운;윤경섭;권우현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.231-231
    • /
    • 2000
  • It is proposed that a novel method which can compensate the time delay occurs in overall system, when voltage and current is measured, owing to LPF, hysteresis control inverter and microprocessor program computation time. The Proposed scheme estimates the time delay using the difference between Q-axis stator current command and time delayed Q-axis stator current in synchronous reference frame, and compensates the time delay of voltage and current using angular displacement of DQ transformation. The proposed scheme compensates accurately the time delay occurs in overall system. Therefore performance of vector control system is improved highly and it is verified by simulation and experiment.

  • PDF

Synchronous AC servo motor speed control using adaptive control scheme (적응제어를 이용한 동기형 교류 서어보 전동기의 속도제어)

  • Yoon, Tae-Woong;Song, Joong-Ho;Kim, Kwang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1987.11a
    • /
    • pp.351-354
    • /
    • 1987
  • In this paper, an adaptive control scheme is applied to the speed control system of a synchronous AC servo motor. The adaptive control system using Ioannou's modified adaptation law is shown to be robustly stable in the presence of current control error and load torque disturbance. The computer simulation demonstrates the rapid compensation of rotor speed deviation due to load torque disturbance.

  • PDF