• Title/Summary/Keyword: compensated disparity

Search Result 16, Processing Time 0.02 seconds

Disparity-Compensated Stereoscopic Video Coding Using the MAC in MPEG-4

  • Cho, Suk-Hee;Yun, Kug-Jin;Ahn, Chung-Hyun;Lee, Soo-In
    • ETRI Journal
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2005
  • The MPEG-4 multiple auxiliary component (MAC) is a good mechanism to achieve one-stream stereoscopic video coding. However, there is no syntax or semantics for the residual texture data of the disparity-compensated image in the current MAC. Therefore, we propose a novel disparity-compensated coding method using the MAC for stereoscopic video. We also define a novel MAC semantics in MPEG-4 so as to support the proposed coding algorithm. The major difference between the existing and proposed coding methods using the MAC is the addition of the residual texture coding.

  • PDF

3D Head Pose Estimation Using The Stereo Image (스테레오 영상을 이용한 3차원 포즈 추정)

  • 양욱일;송환종;이용욱;손광훈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1887-1890
    • /
    • 2003
  • This paper presents a three-dimensional (3D) head pose estimation algorithm using the stereo image. Given a pair of stereo image, we automatically extract several important facial feature points using the disparity map, the gabor filter and the canny edge detector. To detect the facial feature region , we propose a region dividing method using the disparity map. On the indoor head & shoulder stereo image, a face region has a larger disparity than a background. So we separate a face region from a background by a divergence of disparity. To estimate 3D head pose, we propose a 2D-3D Error Compensated-SVD (EC-SVD) algorithm. We estimate the 3D coordinates of the facial features using the correspondence of a stereo image. We can estimate the head pose of an input image using Error Compensated-SVD (EC-SVD) method. Experimental results show that the proposed method is capable of estimating pose accurately.

  • PDF

A study on compensation of distorted 3D depth in the triple fresnel lenses floating image system

  • Lee, Kwnag-Hoon;Kim, Soo-Ho;Yoon, Young-Soo;Kim, Sung-Kyu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1490-1493
    • /
    • 2007
  • We proposed the method to take 3D image having correct depths to the front and rear directions when the stereogram was displayed to an observer through an optical system. Since the magnified stereogram by lenses was not given correct depth to an observer despite having the same magnified disparity. Consequently, we achieved our goal by relations of compensated disparities to both directions with magnification of lenses, viewing distance and base distance of viewer in AFIS.

  • PDF

Adaptively Compensated-Disparity Prediction Scheme for Stereo Image Compression and Reconstruction (스테레오 영상 압축 및 복원을 위한 적응적 변이보상 예측기법)

  • 배경훈;김은수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.676-682
    • /
    • 2002
  • In this paper, an effective stereo image compression and reconstruction technique using a new adaptively compensated-disparity prediction scheme is proposed. That is, by adaptively predicting the mutual correlation between the stereo image using the proposed method, the bandwidth of the stereo input image can be compressed to the level of the conventional 2D image and the predicted image also can be effectively reconstructed using this transmitted reference image and disparity data in the receiver. Especially, in the proposed method, once the feature values are extracted from the input stereo image, then the matching window size for the predicted image reconstruction is adaptively selected in accordance with the magnitude of this feature values. From this adaptive disparity estimation method, reduction of the mismatching probability of the disparity vectors is expected and as a result, the image quality in the reconstructed image can be improved. In addition, from some experiments using the CCETT's stereo images of 'Fichier', 'Manege' and 'Tunnel', it is shown that the proposed method improves the PSNR of the reconstructed image to about 9.08 dB on average by comparing with that of the conventional methods. And also, it is found that there is almost no difference between the original image and the predicted image reconstructed through the proposed method by comparison to that of the conventional methods.

Adaptive Multi-view Video Interpolation Method Based on Inter-view Nonlinear Moving Blocks Estimation (시점 간 비선형 움직임 블록 예측에 기초한 적응적 다시점 비디오 보상 보간 기법)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.4
    • /
    • pp.9-18
    • /
    • 2014
  • Recently, many researches have been focused on multi-view video applications and services such as wireless video surveillance networks, wireless video sensor networks and wireless mobile video. In multi-view video signal processing, to exploit the strong correlation between images acquired by different cameras plays great role in developing a core technique of multi-view video coding. This paper proposes an adaptive multi-view video interpolation technique which is applicable for multi-view distributed video coding without requiring any cooperation amongst the cameras. The proposed algorithm estimates the non-linear moving blocks and employs disparity compensated view prediction, and then fills in the unreliable blocks. Through computer simulations, it is shown that the proposed method outperforms the conventional methods.

Quality Enhancement for Hybrid 3DTV with Mixed Resolution Using Conditional Replenishment Algorithm

  • Jung, Kyeong-Hoon;Bang, Min-Suk;Kim, Sung-Hoon;Choo, Hyon-Gon;Kang, Dong-Wook
    • ETRI Journal
    • /
    • v.36 no.5
    • /
    • pp.752-760
    • /
    • 2014
  • This paper proposes a conditional replenishment algorithm (CRA) to improve the visual quality (where spatial resolutions of the left and right views are mismatched) of a hybrid stereoscopic 3DTV that is based on the ATSC-M/H standard. So as to generate an enhanced view, the CRA is to choose the better substitute among a disparity-compensated view with high quality and a simply interpolated view. The CRA generates a disparity map that includes modes and disparity vectors as additional information. It also employs a quad-tree structure with variable block size by considering the spatial correlation of disparity vectors. In addition, it takes advantage of the disparity map used in a previous frame to keep the amount of additional information as small as possible. The simulation results show that the proposed CRA can successfully improve the peak signal-to-noise ratio of a poor-quality view and consequently have a positive effect on the subjective quality of the resulting 3D view.

A Study on Stereo Matching Algorithm using Disparity Space Image (시차공간영상을 이용한 스테레오 영상 정합에 관한 연구)

  • Lee, Jong-Min;Kim, Dae-Hyun;Choi, Jong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.9-18
    • /
    • 2004
  • This paper proposes a new and simple stereo matching algorithm using the disparity space image (DSI) technique. First of all, we detect some salient feature points on each scan-line of the image pair and set the matching area using those points and define a simple cost matrix. And we take advantage of matching by pixel-by-pixel instead of using the matching window. While the pixel-by-pixel method boost up the speed of matching, because of no using neighbor information, the correctness of the matching may not be better. To cover this point, we expand the matching path using character of disparity-space-image for using neighbor information. In addition, we devise the compensated matching module using the volume of the disparity space image in order to improve the accuracy of the match. Consequently, we can reduce mismatches at the disparity discontinuities and can obtain the more detailed and correct disparity map.

Improvement of Disparity Map using Loopy Belief Propagation based on Color and Edge (Disparity 보정을 위한 컬러와 윤곽선 기반 루피 신뢰도 전파 기법)

  • Kim, Eun Kyeong;Cho, Hyunhak;Lee, Hansoo;Wibowo, Suryo Adhi;Kim, Sungshin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.5
    • /
    • pp.502-508
    • /
    • 2015
  • Stereo images have an advantage of calculating depth(distance) values which can not analyze from 2-D images. However, depth information obtained by stereo images has due to following reasons: it can be obtained by computation process; mismatching occurs when stereo matching is processing in occlusion which has an effect on accuracy of calculating depth information. Also, if global method is used for stereo matching, it needs a lot of computation. Therefore, this paper proposes the method obtaining disparity map which can reduce computation time and has higher accuracy than established method. Edge extraction which is image segmentation based on feature is used for improving accuracy and reducing computation time. Color K-Means method which is image segmentation based on color estimates correlation of objects in an image. And it extracts region of interest for applying Loopy Belief Propagation(LBP). For this, disparity map can be compensated by considering correlation of objects in the image. And it can reduce computation time because of calculating region of interest not all pixels. As a result, disparity map has more accurate and the proposed method reduces computation time.

Fast Algorithm for Disparity Estimation in ATSC-M/H based Hybrid 3DTV (ATSC-M/H 기반의 융합형 3DTV를 위한 양안시차 고속 추정 알고리즘)

  • Lee, Dong-Hee;Kim, Sung-Hoon;Lee, Jooyoung;Kang, Dongwook;Jung, Kyeong-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.19 no.4
    • /
    • pp.521-532
    • /
    • 2014
  • ATSC-M/H based hybrid 3DTV, which is one of the service compatible 3DTV system, has considerable quality gap between the left and right views. And CRA(Conditional Replenishment Algorithm) has been proposed to deal with the issue of resolution mismatch and improve the visual quality. In CRA, the disparity vectors of stereoscopic images are estimated. The disparity compensated left view and simply enlarged right view are compared and conditionally selected for generating the enhanced right view. In order to implement CRA, a fast algorithm is strongly required because the disparity vectors need to be obtained at every layer and the complexity of CRA is quite high. In this paper, we adopted SDSP(Small Diamond Search Pattern) instead of full search and predicted the initial position of search pattern by examining the spatio-temporal correlation of disparity vectors and also suggested the SKIP mode to limit the number of processing units. The computer simulation showed that the proposed fast algorithm could greatly reduce the processing time while minimizing the quality degradation of reconstructed right view.

A Study on Compensation of Disparity for Incorrect 3D Depth in the Triple Fresnel Lenses floating Image System (심중 프렌넬 렌즈 시스템에서 재생된 입체부양영상의 올바른 깊이감을 구현하기 위한 시차보정 방법에 대한 연구)

  • Lee, K.H.;Kim, S.H.;Yoon, Y.S.;Kim, S.K.
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.246-255
    • /
    • 2007
  • The floating image system (FIS) is a device to display input source in the space between fast surface of the display and an observer and it provides pseudo 3D depth to an observer when input source as real object or 2D image was displayed through the optical lens system in the FIS. The Advanced floating image system (AFIS) was designed to give more effective 3D depth than existing FIS by adding front and rear depth cues to the displayed stereogram, which it was used as input source. The magnitude of disparity and size of stereogram were strongly related each other and they have been optimized for presenting 3D depths in a non-optical lens systems. Thus, if they were used in optical lens system, they will have reduced or magnified parameters, leading to problem such as providing incorrect 3D depth cues to an observer. Although the size of stereogram and disparity were demagnified by total magnifying power of optical system, the viewing distance (VD) from the display to an observer and base distance (BD) for the gap between the eyes were fixed. For this reason, the quantity of disparity in displayed stereogram through the existing FIS has not kept the magnifying power to the total optical system. Therefore, we proposed the methods to provide correct 3D depth to an observer by compensating quantity of disparity in stereogram which was satisfied to keep total magnifying power of optical lenses system by AFIS. Consequently, the AFIS provides a good floating depth (pseudo 3D) with correct front and rear 3D depth cues to an observer.