• 제목/요약/키워드: comparison accuracy

검색결과 3,247건 처리시간 0.026초

가격비교사이트 평가기준의 중요도와 만족도 분석 (Perceived Importance and Satisfaction of Evaluation Criteria of the Price Comparison Website)

  • 차경욱
    • 가족자원경영과 정책
    • /
    • 제11권4호
    • /
    • pp.1-20
    • /
    • 2007
  • The purpose of this study was to identify the criteria of evaluating a price-comparison website, and to investigate the consumers' perceived importance and satisfaction of each criterion. Also, it compared both the importance and satisfaction levels based on consumers' socio-economic and Internet-usage characteristics. Data for this study came from a questionnaire completed by consumers (n=417), who had used the price-comparison website, and were analyzed through factor analysis, t-test, and ANOVA. The findings of the study were as follows: First, the evaluation criteria of the price-comparison website were categorized into five variety of information, accuracy, convenience, credibility, and the website system. Second, convenience of searching information was seen by consumers as both the most important and most satisfactory criterion. Variety of information was also considered important. For most of the evaluation criteria, the level of consumers' satisfaction was significantly lower than the level of consumers' recognized importance. Third, consumers in their 20s, students, and housewives were less likely to be satisfied by the price-comparison website overall. Older people were less likely to be satisfied with the convenience of the website, and the higher-income group was less likely to be satisfied with the variety of information on hand.

  • PDF

RGB-csb를 활용한 제한된 CNN에서의 정확도 분석 및 비교 (Accuracy Analysis and Comparison in Limited CNN using RGB-csb)

  • 공준배;장민석;남광우;이연식
    • 한국전자통신학회논문지
    • /
    • 제15권1호
    • /
    • pp.133-138
    • /
    • 2020
  • 본 논문은 대부분의 변형된 CNN(: Convolution Neural Networks)에서 사용하지 않는 첫 번째 컨볼루션 층(convolution layer)을 사용해 정확도 향상을 노리는 방법을 소개한다. GoogLeNet, DenseNet과 같은 CNN에서 첫 번째 컨볼루션 층에서는 기존방식(3×3 컨볼루션연산 및 배규정규화, 활성화함수)만을 사용하는데 이 부분을 RGB-csb(: RGB channel separation block)로 대체한다. 이를 통해 RGB값을 특징 맵에 적용시켜 정확성을 향상시킬 수 있는 선행연구 결과에 추가적으로, 기존 CNN과 제한된 영상 개수를 사용하여 정확도를 비교한다. 본 논문에서 제안한 방법은 영상의 개수가 적을수록 학습 정확도 편차가 커 불안정하지만 기존 CNN에 비해 정확도가 평균적으로 높음을 알 수 있다. 영상의 개수가 적을수록 평균적으로 약 2.3% 높은 정확도를 보였으나 정확도 편차는 5% 정도로 크게 나타났다. 반대로 영상의 개수가 많아질수록 기존 CNN과의 평균 정확도의 차이는 약 1%로 줄어들고, 각 학습 결과의 정확도 편차 또한 줄어든다.

Comparison of prediction accuracy for genomic estimated breeding value using the reference pig population of single-breed and admixed-breed

  • Lee, Soo Hyun;Seo, Dongwon;Lee, Doo Ho;Kang, Ji Min;Kim, Yeong Kuk;Lee, Kyung Tai;Kim, Tae Hun;Choi, Bong Hwan;Lee, Seung Hwan
    • Journal of Animal Science and Technology
    • /
    • 제62권4호
    • /
    • pp.438-448
    • /
    • 2020
  • This study was performed to increase the accuracy of genomic estimated breeding value (GEBV) predictions for domestic pigs using single-breed and admixed reference populations (single-breed of Berkshire pigs [BS] with cross breed of Korean native pigs and Landrace pigs [CB]). The principal component analysis (PCA), linkage disequilibrium (LD), and genome-wide association study (GWAS) were performed to analyze the population structure prior to genomic prediction. Reference and test population data sets were randomly sampled 10 times each and precision accuracy was analyzed according to the size of the reference population (100, 200, 300, or 400 animals). For the BS population, prediction accuracy was higher for all economically important traits with larger reference population size. Prediction accuracy was ranged from -0.05 to 0.003, for all traits except carcass weight (CWT), when CB was used as the reference population and BS as the test. The accuracy of CB for backfat thickness (BF) and shear force (SF) using admixed population as reference increased with reference population size, while the results for CWT and muscle pH at 24 hours after slaughter (pH) were equivocal with respect to the relationship between accuracy and reference population size, although overall accuracy was similar to that using the BS as the reference.

가변구조제어계의 응답특성향상을 위한 제어법칙의 개선 (Improvement of control law for response charaoteristics of a variable structure control system)

  • 김중완;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.508-512
    • /
    • 1989
  • A new control law of a VSCS is illustrated and put into an analytical form. Using the presented control law, a VSCS shows smooth response, low control input and high accuracy in comparison with those by typical control law.

  • PDF

로보트용 감속기의 지동 특성 비교 (Comparison of vibration characteristics on reducer for robot)

  • 손창수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1987년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 16-17 Oct. 1987
    • /
    • pp.479-483
    • /
    • 1987
  • The reducers are widely used to reduce output speed and to amplify driving torque of actuator for industrial robots and many industrial units. But the vibration of robot, which is affected by the reducer, becomes a problem for robot which has to move a driven part with high accuracy. This paper compares experimentally the vibration characteristics of the reducer for industrial robot.

  • PDF

On the Bias of Bootstrap Model Selection Criteria

  • Kee-Won Lee;Songyong Sim
    • Journal of the Korean Statistical Society
    • /
    • 제25권2호
    • /
    • pp.195-203
    • /
    • 1996
  • A bootstrap method is used to correct the apparent downward bias of a naive plug-in bootstrap model selection criterion, which is shown to enjoy a high degree of accuracy. Comparison of bootstrap method with the asymptotic method is made through an illustrative example.

  • PDF

컨볼루션 신경망과 전이 학습을 이용한 버섯 영상 인식 (Mushroom Image Recognition using Convolutional Neural Network and Transfer Learning)

  • 강은철;한영태;오일석
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제24권1호
    • /
    • pp.53-57
    • /
    • 2018
  • 독버섯 중독 사건이 종종 발생한다. 본 논문은 딥러닝 기술을 활용한 버섯 인식 시스템을 제안한다. 딥러닝 기법 중 하나인 컨볼루션 신경망을 사용하였다. 컨볼루션 신경망을 학습하기 위해 이미지 크롤링을 이용하여 38종의 버섯에 대해 1478장의 영상을 수집하였다. 수집한 데이터셋을 가지고 AlexNet, VGGNet, GoogLeNet을 비교 실험하였으며, 클래스 수 확장에 따른 비교 실험, 전이 학습을 사용한 비교실험을 하였다. 실험 결과 1순위 정확도는 82.63%, 5순위 정확도는 96.84%라는 성능을 얻었다.