• 제목/요약/키워드: comparing models

검색결과 1,718건 처리시간 0.025초

항공 LiDAR 원자료 필터링 조건에 따른 산림지역 수치표고모형 정확도 평가 (The Accuracy Evaluation of Digital Elevation Models for Forest Areas Produced Under Different Filtering Conditions of Airborne LiDAR Raw Data)

  • 조승완;최형태;박주원
    • 농업생명과학연구
    • /
    • 제50권3호
    • /
    • pp.1-11
    • /
    • 2016
  • 3차원 지형정보를 얻기 위하여 항공 LiDAR(Light Detection and Ranging)자료 기반 수치표고모델(Digital Elevation Model, DEM) 생성에 대한 연구들에 대한 관심이 지속적으로 높아져 왔다. 항공 LiDAR 원자료로부터 정확도가 높은 DEM을 생성하기 위해서는 3차원 점군에서 비지면점을 제외시키고 지면점만을 포함시키는 필터링(filtering)과정이 중요하다. 특히, 필터링을 구성하는 알고리즘의 패러미터 값 변화에 따라 산출되는 결과물들에 차이가 발생하고 정확도에 영향을 준다. 따라서 본 연구는 화천, 양주, 경산 및 장흥 유역 대상지의 항공 LiDAR 자료로부터 Fusion 소프트웨어를 이용하여 LiDAR DEM을 생성하는 GroundFilter알고리즘의 Mean패러미터(GFmn) 수준 변화가 LiDAR DEM 결과물의 정확도에 어떤 영향을 주는지 분석하였다. GFmn 수준 변화에 따른 정확도에 대한 영향 여부를 분석하기 위해 일원배치분산분석을 실시하였고, 그 결과 GFmn의 수준 변화에 따라 정확도에 대한 영향이 유의미하게 나타났다(F-value: 4.915, p<0.01). 이 후 각각의 GFmn 수준들을 다른 수준들과 차이가 있는지 여부로 묶기 위하여 사후검정을 실시하였다. 사후분석을 통해 잔차의 평균 차이에 따라 '7, 5, 9, 3'과 '1' 두 집단으로 나뉘었다. 아울러 보다 정확한 해발고도를 표현하는 LiDAR DEM 생성하는데 적정 GFmn은 '7' 조건일 때로 나타났다. 이 연구를 통해 보다 정확한 해발고도를 표현하는 LiDAR DEM을 생성할 수 있는 패러미터 값을 제안하였다.

GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출 (Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea)

  • 양세영;최현영;임정호
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.933-948
    • /
    • 2023
  • 대기 중 에어로졸은 인체에 악영향을 끼칠 뿐 아니라 기후 시스템에도 직간접적인 영향을 미치므로 에어로졸의 특성과 시공간적인 분포에 대한 이해는 매우 중요하다. 이를 위해 위성기반 관측을 통해 에어로졸 광학 두께(Aerosol Optical Depth, AOD)를 산출하여 에어로졸을 모니터링하는 다양한 연구가 수행되어 왔다. 하지만 이는 주로 조견표를 활용한 역 산출 알고리즘에 기반하여 이루어지기 때문에 많은 계산량을 요구하며 불확실성이 존재한다. 따라서, 본 연구에서는 Geostationary Ocean Color Imager-II (GOCI-II)의 대기상한반사도와 30일 동안의 대기상한반사도 중 최솟값과 관측 시점 값의 차이 값, 수치 모델 기반 기상학적 변수 등을 활용하여 기계학습 기반 고해상도 AOD 직접 산출 알고리즘을 개발하였다. Light Gradient Boosting Machine (LGBM) 기법이 사용되었으며, 추정된 결과는 지상 관측 자료인 Aerosol Robotic Network (AERONET) AOD를 활용하여 랜덤, 시간 및 공간별 N-fold 교차검증을 통해 검증되었다. 세 가지 교차검증 결과 R2=0.70-0.80, RMSE=0.08-0.09, 기대오차(Expected Error, EE) 안에 있는 비율은 75.2-85.1% 수준으로 안정적인 성능을 보였다. Shapley Additive exPlanations (SHAP) 분석에서는 반사도 관련 변수들이 기여도의 상위권 대부분을 차지하고 있는 것을 통해 반사도 자료가 AOD 추정에 많은 기여를 하는 것을 확인하였다. 서울과 울산 지역에 대한 시간 별 AOD의 공간 분포를 분석한 결과, 개발된 LGBM 모델은 시간의 흐름에 따라 AERONET AOD 값과 유사한 수준으로 AOD를 추정하고 있었다. 이를 통해 높은 시공간 해상도(i.e., 시간별, 250 m)에서의 AOD 산출이 가능함을 확인하였다. 또한, 산출 커버리지 비교에서 LGBM 모델의 평균 산출 빈도가 GOCI-II L2 AOD 산출물 대비 8.8%가량 증가한 것을 통해 기존 물리모델기반 AOD 산출 과정에서 발생하던 밝은 지표면에 대한 과도한 마스킹의 문제점을 개선시킨 것을 확인하였다.

입지배분모형 기반의 서울시 수소충전소 접근성 분석 (An Analysis of Accessibility to Hydrogen Charging Stations in Seoul Based on Location-Allocation Models)

  • 김상균;원종석;편용범;조민경
    • 한국재난정보학회 논문집
    • /
    • 제20권2호
    • /
    • pp.339-350
    • /
    • 2024
  • 연구목적: 이 연구는 서울시 10개 수소충전소의 공간적 접근성 분석을 실시하고, 접근이 어려운 지역을 식별하였다. 입지의 형평성과 안전성 측면에서 신규 입지를 추가하여 접근성을 분석을 다시 수행한 후, 개선 효과 비교를 통해 시사점을 도출하는 것을 목적으로 한다. 연구방법: ArcGIS 프로그램의 네트워크 분석 기반의 입지배분(Location-Allocation) 모형과 이용권역(Service Area) 모형을 적용하여 접근이 취약한 지역을 식별하였다. 입지선정 방분석 기반의 입지배분(Location-Allocation) 모형과 이용권역(Service Area) 모형을 적용하여 접근이 취약한 지역을 식별하였다. 입지선정 방법은 부족한 수소충전소에 신속한 도착이 필요한 점을 고려하여 '최소시설 수로 최대수요를 확보하도록 함(Minimize Facilities)' 방법을 적용하였다. 특정한 시간 내의 도착을 위한 한계 거리는 서울시 2022년 평균 차량통행속도(23.1km/h, 서울시 열린데이터 광장)를 적용하여 10분 이동가능 거리인 3,850m과 5,775m(15분) 그리고 7,700m(20분)의 세 가지로 분하여 분석하였다. 신규 입지는 수소충전소 설치에 대한 갈등을 최소화하기 위하여 산업통상자원부의 특례기준1)을 적용하여 기존의 주유소, LPG/CNG 충전소 중에서 수소충전소 추가 설치가 가능한 후보지를 도출하였다. 연구결과: 분석 결과, 최종적으로 상세 현황 검토를 통해 추가 후보지 5개소가 도출되었다. 기존 10개의 수소충전소에 20분 이내 접근이 취약한 지역을 중심으로 상대적으로 안전한 기존 주유소와 LPG/CNG 충전소에 신규 수소충전소 5개소를 설치하면 접근성이 크게 개선됨을 확인할 수 있었다. 그럼에도 불구하고 여전히 접근이 어려운 지역이 있는 것으로 나타났다. 결론: 입지배분모형을 이용하여 수소충전소 접근이 어려운 지역을 식별하고, 설치의 우선순위를 부여한다면 과학적 근거 기반 수소충전소 입지 선정을 위한 의사결정을 지원할 수 있다.

Sentinel-1 위성 영상을 활용한 침수 탐지 기법 방법론 비교 연구 (Comparative study of flood detection methodologies using Sentinel-1 satellite imagery)

  • 이성우;김완엽;이슬찬;정하규;박종수;최민하
    • 한국수자원학회논문집
    • /
    • 제57권3호
    • /
    • pp.181-193
    • /
    • 2024
  • 기후변화에 의해 발생하는 대기 불균형은 강우량의 증가로 이어지고, 침수 발생 빈도가 증가함에 따라 이를 탐지할 수 있는 기술의 필요성이 증가하고 있다. 침수 피해를 최소화하기 위해 지속적인 모니터링이 필요하며, 날씨의 영향을 받지 않는 합성개구레이더(Synthetic Aperture Radar, SAR) 영상을 활용하여 침수지역을 탐지하였다. 관측된 데이터는 median 필터를 통해 노이즈를 감소시키는 전처리 과정을 진행하였으며, 객체 탐지 기법을 통해 수체와 비수체를 분류하여 각 기법의 침수탐지 활용성을 평가하고자 하였다. 본 연구에서는 Otsu 기법과 SVM 기법을 통해 수체 및 침수 탐지를 수행하였으며, Confusion Matrix를 통해 전체적인 모델의 성능을 평가하였다. Otsu 기법은 수체와 비수체의 경계를 구분하는데 적합함을 보였으나, 혼합물의 영향을 받아 오탐지의 비율이 높게 나타났다. 반면, SVM 기법을 사용한 경우, 오탐지 비율이 낮고 혼합물에 의한 영향에 민감하지 않은 것으로 관측되었다. 이에 따라 침수 상태를 제외한 다른 조건에서 SVM 기법의 정확도가 높게 나타났다. Otsu 기법이 침수 조건에서 SVM 기법보다 다소 높은 정확도를 보였지만, 정확도의 차이가 5% 미만임을 확인할 수 있었다(Otsu: 0.93, SVM: 0.90). SVM 기법이 Otsu 기법보다 침수 전, 침수 후의 조건에서 정확도 차이가 최대 15% 이상 발생하여 수체 및 침수탐지에 더 적합하게 나타났다(Otsu: 0.77, SVM: 0.92). 이러한 결과는 SVM 기법이 수체 및 침수탐지에서 효과적으로 활용될 수 있음을 시사하며, 미래의 수재해 탐지 시스템에 적용될 때 유용한 정보를 제공할 수 있을 것으로 기대된다.

도입주체에 따른 인터넷경로의 도입효과 (The Impact of the Internet Channel Introduction Depending on the Ownership of the Internet Channel)

  • 유원상
    • 마케팅과학연구
    • /
    • 제19권1호
    • /
    • pp.37-46
    • /
    • 2009
  • The Census Bureau of the Department of Commerce announced in May 2008 that U.S. retail e-commerce sales for 2006 reached $ 107 billion, up from $ 87 billion in 2005 - an increase of 22 percent. From 2001 to 2006, retail e-sales increased at an average annual growth rate of 25.4 percent. The explosive growth of E-Commerce has caused profound changes in marketing channel relationships and structures in many industries. Despite the great potential implications for both academicians and practitioners, there still exists a great deal of uncertainty about the impact of the Internet channel introduction on distribution channel management. The purpose of this study is to investigate how the ownership of the new Internet channel affects the existing channel members and consumers. To explore the above research questions, this study conducts well-controlled mathematical experiments to isolate the impact of the Internet channel by comparing before and after the Internet channel entry. The model consists of a monopolist manufacturer selling its product through a channel system including one independent physical store before the entry of an Internet store. The addition of the Internet store to this channel system results in a mixed channel comprised of two different types of channels. The new Internet store can be launched by the independent physical store such as Bestbuy. In this case, the physical retailer coordinates the two types of stores to maximize the joint profits from the two stores. The Internet store also can be introduced by an independent Internet retailer such as Amazon. In this case, a retail level competition occurs between the two types of stores. Although the manufacturer sells only one product, consumers view each product-outlet pair as a unique offering. Thus, the introduction of the Internet channel provides two product offerings for consumers. The channel structures analyzed in this study are illustrated in Fig.1. It is assumed that the manufacturer plays as a Stackelberg leader maximizing its own profits with the foresight of the independent retailer's optimal responses as typically assumed in previous analytical channel studies. As a Stackelberg follower, the independent physical retailer or independent Internet retailer maximizes its own profits, conditional on the manufacturer's wholesale price. The price competition between two the independent retailers is assumed to be a Bertrand Nash game. For simplicity, the marginal cost is set at zero, as typically assumed in this type of study. In order to explore the research questions above, this study develops a game theoretic model that possesses the following three key characteristics. First, the model explicitly captures the fact that an Internet channel and a physical store exist in two independent dimensions (one in physical space and the other in cyber space). This enables this model to demonstrate that the effect of adding an Internet store is different from that of adding another physical store. Second, the model reflects the fact that consumers are heterogeneous in their preferences for using a physical store and for using an Internet channel. Third, the model captures the vertical strategic interactions between an upstream manufacturer and a downstream retailer, making it possible to analyze the channel structure issues discussed in this paper. Although numerous previous models capture this vertical dimension of marketing channels, none simultaneously incorporates the three characteristics reflected in this model. The analysis results are summarized in Table 1. When the new Internet channel is introduced by the existing physical retailer and the retailer coordinates both types of stores to maximize the joint profits from the both stores, retail prices increase due to a combination of the coordination of the retail prices and the wider market coverage. The quantity sold does not significantly increase despite the wider market coverage, because the excessively high retail prices alleviate the market coverage effect to a degree. Interestingly, the coordinated total retail profits are lower than the combined retail profits of two competing independent retailers. This implies that when a physical retailer opens an Internet channel, the retailers could be better off managing the two channels separately rather than coordinating them, unless they have the foresight of the manufacturer's pricing behavior. It is also found that the introduction of an Internet channel affects the power balance of the channel. The retail competition is strong when an independent Internet store joins a channel with an independent physical retailer. This implies that each retailer in this structure has weak channel power. Due to intense retail competition, the manufacturer uses its channel power to increase its wholesale price to extract more profits from the total channel profit. However, the retailers cannot increase retail prices accordingly because of the intense retail level competition, leading to lower channel power. In this case, consumer welfare increases due to the wider market coverage and lower retail prices caused by the retail competition. The model employed for this study is not designed to capture all the characteristics of the Internet channel. The theoretical model in this study can also be applied for any stores that are not geographically constrained such as TV home shopping or catalog sales via mail. The reasons the model in this study is names as "Internet" are as follows: first, the most representative example of the stores that are not geographically constrained is the Internet. Second, catalog sales usually determine the target markets using the pre-specified mailing lists. In this aspect, the model used in this study is closer to the Internet than catalog sales. However, it would be a desirable future research direction to mathematically and theoretically distinguish the core differences among the stores that are not geographically constrained. The model is simplified by a set of assumptions to obtain mathematical traceability. First, this study assumes the price is the only strategic tool for competition. In the real world, however, various marketing variables can be used for competition. Therefore, a more realistic model can be designed if a model incorporates other various marketing variables such as service levels or operation costs. Second, this study assumes the market with one monopoly manufacturer. Therefore, the results from this study should be carefully interpreted considering this limitation. Future research could extend this limitation by introducing manufacturer level competition. Finally, some of the results are drawn from the assumption that the monopoly manufacturer is the Stackelberg leader. Although this is a standard assumption among game theoretic studies of this kind, we could gain deeper understanding and generalize our findings beyond this assumption if the model is analyzed by different game rules.

  • PDF

기계학습을 활용한 상품자산 투자모델에 관한 연구 (A Study on Commodity Asset Investment Model Based on Machine Learning Technique)

  • 송진호;최흥식;김선웅
    • 지능정보연구
    • /
    • 제23권4호
    • /
    • pp.127-146
    • /
    • 2017
  • 상품자산(Commodity Asset)은 주식, 채권과 같은 전통자산의 포트폴리오의 안정성을 높이기 위한 대체투자자산으로 자산배분의 형태로 투자되고 있지만 주식이나 채권 자산에 비해 자산배분에 대한 모델이나 투자전략에 대한 연구가 부족한 실정이다. 최근 발전한 기계학습(Machine Learning) 연구는 증권시장의 투자부분에서 적극적으로 활용되고 있는데, 기존 투자모델의 한계점을 개선하는 좋은 성과를 나타내고 있다. 본 연구는 이러한 기계학습의 한 기법인 SVM(Support Vector Machine)을 이용하여 상품자산에 투자하는 모델을 제안하고자 한다. 기계학습을 활용한 상품자산에 관한 기존 연구는 주로 상품가격의 예측을 목적으로 수행되었고 상품을 투자자산으로 자산배분에 관한 연구는 찾기 힘들었다. SVM을 통한 예측대상은 투자 가능한 대표적인 4개의 상품지수(Commodity Index)인 골드만삭스 상품지수, 다우존스 UBS 상품지수, 톰슨로이터 CRB상품지수, 로저스 인터내셔날 상품지수와 대표적인 상품선물(Commodity Futures)로 구성된 포트폴리오 그리고 개별 상품선물이다. 개별상품은 에너지, 농산물, 금속 상품에서 대표적인 상품인 원유와 천연가스, 옥수수와 밀, 금과 은을 이용하였다. 상품자산은 전반적인 경제활동 영역에 영향을 받기 때문에 거시경제지표를 통하여 투자모델을 설정하였다. 주가지수, 무역지표, 고용지표, 경기선행지표 등 19가지의 경제지표를 이용하여 상품지수와 상품선물의 등락을 예측하여 투자성과를 예측하는 연구를 수행한 결과, 투자모델을 활용하여 상품선물을 리밸런싱(Rebalancing)하는 포트폴리오가 가장 우수한 성과를 나타냈다. 또한, 기존의 대표적인 상품지수에 투자하는 것 보다 상품선물로 구성된 포트폴리오에 투자하는 것이 우수한 성과를 얻었으며 상품선물 중에서도 에너지 섹터의 선물을 제외한 포트폴리오의 성과가 더 향상된 성과를 나타남을 증명하였다. 본 연구에서는 포트폴리오 성과 향상을 위해 기존에 널리 알려진 전통적 주식, 채권, 현금 포트폴리오에 상품자산을 배분하고자 할 때 투자대상은 상품지수에 투자하는 것이 아닌 개별 상품선물을 선정하여 자체적 상품선물 포트폴리오를 구성하고 그 방법으로는 기간마다 강세가 예측되는 개별 선물만을 골라서 포트폴리오를 재구성하는 것이 효과적인 투자모델이라는 것을 제안한다.

집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법 (Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach)

  • 윤영수
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.55-79
    • /
    • 2013
  • 본 연구에서는 집중형 센터를 가진 역물류네트워크(Reverse logistics network with centralized centers : RLNCC)를 효율적을 해결하기 위한 혼합형 유전알고리즘(Hybrid genetic algorithm : HGA) 접근법을 제안한다. 제안된 HGA에서는 유전알고리즘(Genetic algorithm : GA)이 주요한 알고리즘으로 사용되며, GA 실행을 위해 0 혹은 1의 값을 가질 수 있는 새로운 비트스트링 표현구조(Bit-string representation scheme), Gen and Chang(1997)이 제안한 확장샘플링공간에서의 우수해 선택전략(Elitist strategy in enlarged sampling space) 2점 교차변이 연산자(Two-point crossover operator), 랜덤 돌연변이 연산자(Random mutation operator)가 사용된다. 또한 HGA에서는 혼합형 개념 적용을 위해 Michalewicz(1994)가 제안한 반복적언덕오르기법(Iterative hill climbing method : IHCM)이 사용된다. IHCM은 지역적 탐색기법(Local search technique) 중의 하나로서 GA탐색과정에 의해 수렴된 탐색공간에 대해 정밀하게 탐색을 실시한다. RLNCC는 역물류 네트워크에서 수집센터(Collection center), 재제조센터(Remanufacturing center), 재분배센터(Redistribution center), 2차 시장(Secondary market)으로 구성되며, 이들 각 센터 및 2차 시장들 중에서 하나의 센터 및 2차 시장만 개설되는 형태를 가지고 있다. 이러한 형태의 RLNCC는 혼합정수계획법(Mixed integer programming : MIP)모델로 표현되며, MIP 모델은 수송비용, 고정비용, 제품처리비용의 총합을 최소화하는 목적함수를 가지고 있다. 수송비용은 각 센터와 2차 시장 간에 제품수송에서 발생하는 비용을 의미하며, 고정비용은 각 센터 및 2차 시장의 개설여부에 따라 결정된다. 예를 들어 만일 세 개의 수집센터(수집센터 1, 2, 3의 개설비용이 각각 10.5, 12.1, 8.9)가 고려되고, 이 중에서 수집센터 1이 개설되고, 나머지 수집센터 2, 3은 개설되지 않을 경우, 전체고정비용은 10.5가 된다. 제품처리비용은 고객으로부터 회수된 제품을 각 센터 및 2차 시장에서 처리할 경우에 발생되는 비용을 의미한다. 수치실험에서는 본 연구에서 제안된 HGA접근법과 Yun(2013)의 연구에서 제안한 GA접근법이 다양한 수행도 평가 척도에 의해 서로 비교, 분석된다. Yun(2013)이 제안한 GA는 HGA에서 사용되는 IHCM과 같은 지역적탐색기법을 가지지 않는 접근법이다. 이들 두 접근법에서 동일한 조건의 실험을 위해 총세대수 : 10,000, 집단의 크기 : 20, 교차변이 확률 : 0.5, 돌연변이 확률 : 0.1, IHCM을 위한 탐색범위 : 2.0이 사용되며, 탐색의 랜덤성을 제거하기 위해 총 20번의 반복실행이 이루어 졌다. 사례로 제시된 두 가지 형태의 RLNCC에 대해 GA와 HGA가 각각 실행되었으며, 그 실험결과는 본 연구에서 제안된 HGA가 기존의 접근법인 GA보다 더 우수하다는 것이 증명되었다. 다만 본 연구에서는 비교적 규모가 작은 RLNCC만을 고려하였기에 추후 연구에서는 보다 규모가 큰 RLNCC에 대해 비교분석이 이루어 져야 할 것이다.

카테고리 연관 규칙 마이닝을 활용한 추천 정확도 향상 기법 (A Study on the Improvement of Recommendation Accuracy by Using Category Association Rule Mining)

  • 이동원
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.27-42
    • /
    • 2020
  • 인터넷이라는 가상 공간을 활용함으로써 물리적 공간의 제약을 갖는 오프라인 쇼핑의 한계를 넘어선 온라인 쇼핑은 다양한 기호를 가진 소비자를 만족시킬 수 있는 수많은 상품을 진열할 수 있게 되었다. 그러나, 이는 역설적으로 소비자가 구매의사결정 과정에서 너무 많은 대안을 비교 평가해야 하는 어려움을 겪게 함으로써 오히려 상품 선택을 방해하는 원인이 되기도 한다. 이런 부작용을 해소하기 위한 노력으로서, 연관 상품 추천은 수많은 상품을 다루는 온라인 상거래에서 소비자의 구매의사결정 과정 중 정보탐색 및 대안평가에 소요되는 시간과 노력을 줄여주고 이탈을 방지하며 판매자의 매출 증대에 기여할 수 있다. 연관 상품 추천에 사용되는 연관 규칙 마이닝 기법은 통계적 방법을 통해 주문과 같은 거래 데이터로부터 서로 연관성 높은 상품을 효과적으로 발견할 수 있다. 하지만, 이 기법은 거래 건수를 기반으로 하므로, 잠재적으로 판매 가능성이 높을지라도 충분한 거래 건수가 확보되지 못한 상품은 추천 목록에서 누락될 수 있다. 이렇게 추천 시 제외된 상품은 소비자에게 구매될 수 있는 충분한 기회를 확보하지 못할 수 있으며, 또 다시 다른 상품에 비해 상대적으로 낮은 추천 기회를 얻는 악순환을 겪을 수도 있다. 본 연구는 구매의사결정이 결국 상품이 지닌 속성에 대한 사용자의 평가를 기반으로 한다는 점에 착안하여, 추천 시 상품의 속성을 반영하면 소비자가 특정 상품을 선택할 확률을 좀더 정확하게 예측할 수 있다는 점을 추천 시스템에 반영하기 위한 목적으로 수행되었다. 즉, 어떤 상품 페이지를 방문한 소비자는 그 상품이 지닌 속성들에 어느 정도 관심을 보인 것이며 추천 시스템은 이런 속성들을 기반으로 연관성을 지닌 상품을 더 정교하게 찾을 수 있다는 것이다. 상품의 주요 속성의 하나로서, 카테고리는 두 상품 간에 아직 드러나지 않은 잠재적인 연관성을 찾기에 적합한 대상이 될 수 있다고 판단하였다. 본 연구는 연관 상품 추천에 상품 간의 연관성뿐만 아니라 카테고리 간의 연관성을 추가로 반영함으로써 추천의 정확도를 높일 수 있는 예측모형을 개발하였고, 온라인 쇼핑몰로부터 수집된 주문 데이터를 활용하여 이루어진 실험은 기존 모형에 비해 추천 성능이 개선됨을 보였다. 실무적인 관점에서 볼 때, 본 연구는 소비자의 구매 만족도를 향상시키고 판매자의 매출을 증가시키는 데에 기여할 수 있을 것으로 기대된다.