• 제목/요약/키워드: comparative genomics analysis

검색결과 132건 처리시간 0.021초

Proteomic Analysis of Global Changes in Protein Expression During Exposure of Gamma Radiation in Bacillus sp. HKG 112 Isolated from Saline Soil

  • Gupta, Anil Kumar;Pathak, Rajiv;Singh, Bharat;Gautam, Hemlata;Kumar, Ram;Kumar, Raj;Arora, Rajesh;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권6호
    • /
    • pp.574-581
    • /
    • 2011
  • A Gram-positive bacterium was isolated from the saline soils of Jangpura (U.P.), India, and showed high-level of radiation-resistant property and survived upto 12.5 kGy dose of gamma radiation. The 16S rDNA sequence of this strain was examined, identified as Bacillus sp. strain HKG 112, and was submitted to the NCBI GenBank (Accession No. GQ925432). The mechanism of radiation resistance and gene level expression were examined by proteomic analysis of whole-cell extract. Two proteins, 38 kDa and 86.5 kDa excised from SDS-PAGE, which showed more significant changes after radiation exposure, were identified by MALDI-TOF as being flagellin and S-layer protein, respectively. Twenty selected 2-DE protein spots from the crude extracts of Bacillus sp. HKG 112, excised from 2- DE, were identified by liquid chromatography mass spectrometry (LC-MS) out of which 16 spots showed significant changes after radiation exposure and might be responsible for the radiation resistance property. Our results suggest that the different responses of some genes under radiation for the expression of radiation-dependent proteins could contribute to a physiological advantage and would be a significant initial step towards a fullsystem understanding of the radiation stress protection mechanisms of bacteria in different environments.

Bridging Comparative Genomics and DNA Marker-aided Molecular Breeding

  • Choi, Hong-Kyu;Cook, Douglas R.
    • 한국육종학회지
    • /
    • 제43권2호
    • /
    • pp.103-114
    • /
    • 2011
  • In recent years, genomic resources and information have accumulated at an ever increasing pace, in many plant species, through whole genome sequencing, large scale analysis of transcriptomes, DNA markers and functional studies of individual genes. Well-characterized species within key plant taxa, co-called "model systems", have played a pivotal role in nucleating the accumulation of genomic information and databases, thereby providing the basis for comparative genomic studies. In addition, recent advances to "Next Generation" sequencing technologies have propelled a new wave of genomics, enabling rapid, low cost analysis of numerous genomes, and the accumulation of genetic diversity data for large numbers of accessions within individual species. The resulting wealth of genomic information provides an opportunity to discern evolutionary processes that have impacted genome structure and the function of genes, using the tools of comparative analysis. Comparative genomics provides a platform to translate information from model species to crops, and to relate knowledge of genome function among crop species. Ultimately, the resulting knowledge will accelerate the development of more efficient breeding strategies through the identification of trait-associated orthologous genes and next generation functional gene-based markers.

BioCovi: A Visualization Service for Comparative Genomics Analysis

  • Lee, Jungsul;Park, Daeui;Bhak, Jong
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.52-54
    • /
    • 2005
  • Visualization of the homology information is an important method to analyze the evolutionary and functional meanings of genes. With a database containing model genomes of Homo sapiens, Mus muculus, and Rattus norvegicus, we constructed a web­based comparative analysis tool, BioCovi, to visualize the homology information of mammalian sequences on a very large scale. The user interface has several features: it marks regions whose identity is greater than that specified, it shows or hides gaps from the result of global sequence alignment, and it inverts the graph when total identity is higher than the threshold specified.

Phylogenomics and its Growing Impact on Algal Phylogeny and Evolution

  • ;윤환수
    • ALGAE
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Genomic data is accumulating in public database at an unprecedented rate. Although presently dominated by the sequences of metazoan, plant, parasitic, and picoeukaryotic taxa, both expressed sequence tag (EST) and complete genomes of free-living algae are also slowly appearing. This wealth of information offers the opportunity to clarify many long-standing issues in algal and plant evolution such as the contribution of the plastid endosymbiont to nuclear genome evolution using the tools of comparative genomics and multi-gene phylogenetics. A particularly powerful approach for the automated analysis of genome data from multiple taxa is termed phylogenomics. Phylogenomics is the convergence of genomics science (the study of the function and structure of genes and genomes) and molecular phylogenetics (the study of the hierarchical evolutionary relationships among organisms, their genes and genomes). The use of phylogenetics to drive comparative genome analyses has facilitated the reconstruction of the evolutionary history of genes, gene families, and organisms. Here we survey the available genome data, introduce phylogenomic pipelines, and review some initial results of phylogenomic analyses of algal genome data.

Characterization of Canthaxanthin Isomers Isolated from a New Soil Dietzia sp. and Their Antioxidant Activities

  • Venugopalan, Vijayalatha;Tripathi, Subhash K.;Nahar, Pradip;Saradhi, P. Pardha;Das, Rakha H.;Gautam, Hemant K.
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권2호
    • /
    • pp.237-245
    • /
    • 2013
  • Canthaxanthin (cx) is a potent antioxidant that is chemically synthesized at the industrial scale and has imperative applications in the cosmetic and feed industries. An orange pigmented mesophilic bacterium, designated as K44, was isolated from soil samples of Kargil, India. Biochemical tests, 16S rRNA gene sequencing, and FAME analysis of the bacterium indicated it to belong in the genus Dietzia and is distinct from human isolates. The strain showed 98% 16S rRNA gene sequence homology with Dietzia maris DSM 43102. High-performance liquid chromatography profile of the pigments isolated from K44 showed two major peaks absorbing at 465.3 and 475 nm. The liquid chromatography-mass spectrometry (LC-MS) analysis of both these peaks revealed their m/z to be 564. The molecular weights, LC-MS/MS fragmentation patterns, and ${\lambda}_{max}$ of these fractions corresponded to all-trans- (475 nm) and 9-cis-(465.3 nm) cx isomers. The antioxidant activities of cis- and trans-cx isomers isolated from this bacterium were found to differ, where the cis-isomer showed higher free radical, superoxide radical, and reactive oxygen species scavenging activities than the alltrans- isomer, suggesting that 9-cis-cx is more effective as an antioxidant than the all-trans-cx.

Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases

  • Wu, Jiayao;Choi, Jaeyoung;Asiegbu, Fred O.;Lee, Yong-Hwan
    • Mycobiology
    • /
    • 제48권5호
    • /
    • pp.373-382
    • /
    • 2020
  • Laccases (EC 1.10.3.2), a group of multi-copper oxidases (MCOs), play multiple biological functions and widely exist in many species. Fungal laccases have been extensively studied for their industrial applications, however, there was no database specially focused on fungal laccases. To provide a comparative genomics platform for fungal laccases, we have developed a comparative genomics platform for laccases and MCOs (http://laccase.riceblast.snu.ac. kr/). Based on protein domain profiles of characterized sequences, 3,571 laccases were predicted from 690 genomes including 253 fungi. The number of putative laccases and their properties exhibited dynamic distribution across the taxonomy. A total of 505 laccases from 68 genomes were selected and subjected to phylogenetic analysis. As a result, four clades comprised of nine subclades were phylogenetically grouped by their putative functions and analyzed at the sequence level. Our work would provide a workbench for putative laccases mainly focused on the fungal kingdom as well as a new perspective in the identification and classification of putative laccases and MCOs.

Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers

  • Nguyen, Van Binh;Giang, Vo Ngoc Linh;Waminal, Nomar Espinosa;Park, Hyun-Seung;Kim, Nam-Hoon;Jang, Woojong;Lee, Junki;Yang, Tae-Jin
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.135-144
    • /
    • 2020
  • Background: Panax species are important herbal medicinal plants in the Araliaceae family. Recently, we reported the complete chloroplast genomes and 45S nuclear ribosomal DNA sequences from seven Panax species, two (P. quinquefolius and P. trifolius) from North America and five (P. ginseng, P. notoginseng, P. japonicus, P. vietnamensis, and P. stipuleanatus) from Asia. Methods: We conducted phylogenetic analysis of these chloroplast sequences with 12 other Araliaceae species and comprehensive comparative analysis among the seven Panax whole chloroplast genomes. Results: We identified 1,128 single nucleotide polymorphisms (SNP) in coding gene sequences, distributed among 72 of the 79 protein-coding genes in the chloroplast genomes of the seven Panax species. The other seven genes (including psaJ, psbN, rpl23, psbF, psbL, rps18, and rps7) were identical among the Panax species. We also discovered that 12 large chloroplast genome fragments were transferred into the mitochondrial genome based on sharing of more than 90% sequence similarity. The total size of transferred fragments was 60,331 bp, corresponding to approximately 38.6% of chloroplast genome. We developed 18 SNP markers from the chloroplast genic coding sequence regions that were not similar to regions in the mitochondrial genome. These markers included two or three species-specific markers for each species and can be used to authenticate all the seven Panax species from the others. Conclusion: The comparative analysis of chloroplast genomes from seven Panax species elucidated their genetic diversity and evolutionary relationships, and 18 species-specific markers were able to discriminate among these species, thereby furthering efforts to protect the ginseng industry from economically motivated adulteration.

Brassica-Arabidopsis Genome Browser: Overview of Brassica Genome based on Comparative Genome Analysis with Arabidopsis

  • Yang, Tae-Jin;Kim, Jung-Sun;Lim, Ki-Byung;Kwon, Soo-Jin;Kim, Jin-A;Jin, Min-A;Park, Jee-Young;Choi, Beom-Soon;Lee, Hyo-Jin;Lim, Myung-Ho;Kim, Ho-Il;Kim, Seok-Hyoung;Lim, Yong-Pyo;Lee, Seung-Wook;Park, Tae-Suk;Hong, Jin-Han;Park, Beom-Seok
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 춘계학술대회 및 국제심포지움 초록집
    • /
    • pp.200-200
    • /
    • 2005
  • PDF

PrimateDB: Development of Primate Genome DB and Web Service

  • Woo, Taeha;Shin, Gwangsik;Kang, Taewook;Kim, Byoungchul;Seo, Jungmin;Kim, Sang Soo;Kim, Chang-Bae
    • Genomics & Informatics
    • /
    • 제3권2호
    • /
    • pp.73-76
    • /
    • 2005
  • The comparative analysis of the human and primate genomes including the chimpanzee can reveal unique types of information impossible to obtain from comparing the human genome with the genomes of other vertebrates. PrimateDB is an open depository server that provides primate genome information for the comparative genome research. The database also provides an easy access to variable information within/between the primate genomes and supports analyzed information, such as annotation and retroelements and phylogeny. The comparative analyses of more primate genomes are also being included as the long-term objective.