• Title/Summary/Keyword: compaction trend

Search Result 27, Processing Time 0.022 seconds

A Study for Selecting the Design Number of Gyration of Gyratory Compactor (선회다짐기의 설계 다짐횟수 선정을 위한 연구)

  • Kim, Boo-Il;Lee, Moon-Sup
    • International Journal of Highway Engineering
    • /
    • v.9 no.4
    • /
    • pp.227-236
    • /
    • 2007
  • The design number of gyration is required in the process of asphalt mix design using gyratory compactor. The purpose of this study is to select the design number of gyration for asphalt mix design in the laboratory. Three types of methods were used to select the design number of gyration. The first method is to select the gyration number which gives the same density with the mixtures compacted with 75 blows of Marshall Compaction. The second method is to select the gyration number which gives the same deformation strength with the mixtures compacted with 75 blows of Marshall Compactor. The third method is to select the gyration number which meet the 4% air voids. Ten mixtures, one type of aggregate(granite), one type of asphalt binder(pen. 60-80), and 10 types of gradation, were prepared for the laboratory tests. As a result, 100 number of gyration was selected for the design number of gyration of the asphalt mix design. This result shows a similar trend with the design number of gyration used in the foreign countries. Thus, the design number of gyration selected in this study can be used for the asphalt mix design using the gyratory compactors.

  • PDF

Interpreting in situ Soil Water Characteristics Curve under Different Paddy Soil Types Using Undisturbed Lysimeter with Soil Sensor

  • Seo, Mijin;Han, Kyunghwa;Cho, Heerae;Ok, Junghun;Zhang, Yongseon;Seo, Youngho;Jung, Kangho;Lee, Hyubsung;Kim, Gisun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.5
    • /
    • pp.336-344
    • /
    • 2017
  • The soil water characteristics curve (SWCC) represents the relation between soil water potential and soil water content. The shape and range of SWCC according to the relation could vary depending on soil characteristics. The objective of the study was to estimate SWCC depending on soil types and layers and to analyze the trend among them. To accomplish this goal, the unsaturated three soils were considered: silty clay loam, loam, and sandy loam soils. Weighable lysimeters were used for exactly measuring soil water content and soil water potential. Two fitting models, van Genuchten and Campbell, were applied. Two models entirely fitted well the measured SWCC, indicating low RMSE and high $R^2$ values. However, the large difference between the measured and the estimated was found at the 30 cm layer of the silty clay loam soil, and the gap was wider as soil water potential increased. In addition, the non-linear decrease of soil water content according to the increase of soil water potential tended to be more distinct in the sandy loam soil and at the 10 cm layer than in the silty clay loam soil and at the lower layers. These might be seen due to the various factors such as not only pore size distribution, but also cracks by high clay content and plow pan layers by compaction. This study clearly showed difficulty in the estimation of SWCC by such kind of factors.

Liquefaction Prevention and Damage Reduction Effect of Reinforcement by Sheet Pile Using 1-G Shaking Table Test (1-G 진동대 실험을 이용한 시트파일 보강재의 액상화 및 피해 방지 효과)

  • Sim, Sung Hun;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.211-217
    • /
    • 2020
  • Earthquake preparedness has become more important with recent increase in the number of earthquakes in Korea, but many existing structures are not prepared for earthquakes. There are various types of liquefaction prevention method that can be applied, such as compaction, replacement, dewatering, and inhibition of shear strain. However, most of the liquefaction prevention methods are applied before construction, and it is important to find optimal methods that can be applied to existing structures and that have few effects on the environment, such as noise, vibration, and changes in underground water level. The purpose of this study is to estimate the correlation between the displacement of a structure and variations of pore water pressure on the ground in accordance with the depth of the sheet file when liquidation occurs. To achieve this, a shaking table test was performed for Joo-Mun-Jin standard sand and an earth pressure, accelerometer, pore water pressure transducer, and LVDT were installed in both the non-liquefiable layer and the liquefiable layer to measure the subsidence and excess pore water pressure in accordance with the time of each embedded depth. Then the results were analyzed. A comparison of the pore water pressure in accordance with Hsp/Hsl was shown to prevent lateral water flow at 1, 0.85 and confirmed that the pore water pressure increased. In addition, the relationship between Hsp/Hsl and subsidence was expressed as a trend line to calculate the expected settlement rate formula for the embedded depth ratio.

An Analysis of Soil Pressure Gauge Result from KHC Test Road (시험도로 토압계 계측결과 분석)

  • In Byeong-Eock;Kim Ji-Won;Kim Kyong-Ha;Lee Kwang-Ho
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.129-141
    • /
    • 2006
  • The vertical soil pressure developed in the granular layer of asphalt pavement system is influenced by various factors, including the wheel load magnitude, the loading speed, and asphalt pavement temperature. This research observed the distribution of vertical soil pressure in pavement supporting layer by investigating measured data from soil pressure gage in the KHC Test Road. The existing specification of subbase and subgrade compaction was also evaluated with measured vertical pressure. The finite element analysis was conducted to verify the accuracy of results with measured data because it can maximize research capacity without significant field test. The test data was collected from A5, A7, A14, and A15 test sections at August, September, and November 2004 and August 2005. Those test sections and test data were selected because they had best quality. The size of influence area was evaluated and the vertical pressure variation was investigated with respect to load level, load speed, and pavement temperature. The lower speed, higher load level, and higher pavement temperature increased the vertical pressure and reduced the area of influence. The finite element result showed the similar trend of vertical pressure variation in comparison with measured data. The specification of compaction quality for subbase and subgrade is higher than the level of vertical pressure measured with truck load so that it should be lurker investigated.

  • PDF

Physical Properties of Mudbelt Sediments in the Southeastern Inner Shelf of Korea (한국 남동해역 내대륙붕 이토대 퇴적물의 물리적 성질)

  • Kim, Gil-Young;Kim, Dae-Choul;Seo, Young-Kyo;Park, Soo-Chul;Choi, Jin-Hyuk;Kim, Jeong-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.4
    • /
    • pp.338-348
    • /
    • 1999
  • Physical properties of mudbelt sediments in the southeastern inner shelf of Korea are studied from 14 cores. Physical properties, compressional wave velocity, and sediment texture for core sediments are analyzed. The major source of sediment in the study area is the Nakdong River. Fine-grained sediments from the river are transported northeastward by coastal circulation and the Tsushima Current, resulting in a gradual northeastward increase in porosity and a decrease in wet bulk density and velocity. The trend matches well with the bathymetry. The mean grain size appears to be the most important variable to determine the physical properties and velocity. The variations of physical properties with burial depth are dependent more strongly on sediment texture than compaction and/or consolidation. Correlations between the physical properties and the sediment texture show slight deviations from those of the continental terrace sediment in the North Pacific and inner shelf sediment in the South Sea of Korea. The velocity is higher than that of the North Pacific and the South Sea sediments between these areas. This is probably due to differences in sedimentary, environment and mineral compositions. The higher sediment velocity in the study area may also be attributed to the escape of gas from pore space which decreases void ratio.

  • PDF

Rheological Evaluation of Blast Furnace Slag Cement Paster over Setting Time (고로슬래그 혼합 시멘트 페이스트의 응결시간 경과에 따른 레올로지 특성)

  • Cho, Bong-Suk;Ahn, Jae-Cheol;Park, Dong-Cheon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.505-512
    • /
    • 2016
  • Even though high performance concrete was developed according to the trend of bigger and higher of reinforced concrete building, the rheological evaluations such as viscosity, yield stress are not enough to use as input data to accomplish the numerical analysis for the construction design. So there are many problems in the harden concrete such as poor compaction, rock pocket and crack, etc. in the field. In this study, consistency curves were measured by the viscometer as hydration reaction time passed. At the same time the slump flow test and Vicat setting test were carried out for comparing with the results of rheological properties. The fluidity of the W/B 30% decreased as the increase of replacement ratio of blast furnace slag. But in case of W/B 40%, the replacement ration did not significantly influenced to the slump flow value with the passage of hydration time. By the replacement of blast furnace slag to cement, initial setting was delayed and the time gap between initial and final setting became shorten. Through the regression analysis using Bingham model, there are a sudden changes of viscosity and yield stress around initial setting in case of low W/B 30%. The increase of workability by the change of free water in cement paste was offset by the coating effect of impermeable layer in case of W/B 40%.

Development on Identification Algorithm of Risk Situation around Construction Vehicle using YOLO-v3 (YOLO-v3을 활용한 건설 장비 주변 위험 상황 인지 알고리즘 개발)

  • Shim, Seungbo;Choi, Sang-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.622-629
    • /
    • 2019
  • Recently, the government is taking new approaches to change the fact that the accident rate and accident death rate of the construction industry account for a high percentage of the whole industry. Especially, it is investing heavily in the development of construction technology that is fused with ICT technology in line with the current trend of the 4th Industrial Revolution. In order to cope with this situation, this paper proposed a concept to recognize and share the work situation information between the construction machine driver and the surrounding worker to enhance the safety in the place where construction machines are operated. In order to realize the part of the concept, we applied image processing technology using camera based on artificial intelligence to earth-moving work. Especially, we implemented an algorithm that can recognize the surrounding worker's circumstance and identify the risk situation through the experiment using the compaction equipment. and image processing algorithm based on YOLO-v3. This algorithm processes 15.06 frames per second in video and can recognize danger situation around construction machine with accuracy of 90.48%. We will contribute to the prevention of safety accidents at the construction site by utilizing this technology in the future.