• Title/Summary/Keyword: compaction trend

Search Result 27, Processing Time 0.021 seconds

Numerical analysis of sedimentary compaction: Implications for porosity and layer thickness variation (수치해석적 다짐 작용 연구: 공극률과 퇴적층 두께 변화에 미치는 영향)

  • Kim, Yeseul;Lee, Changyeol;Lee, Eun Young
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.631-640
    • /
    • 2018
  • To understand the formation and evolution of a sedimentary basin in basin analysis and modelling studies, it is important to analyze the thickness and age range of sedimentary layers infilling a basin. Because the compaction effect reduces the thickness of sedimentary layers during burial, basin modelling studies typically restore the reduced thickness using the relation of porosity and depth (compaction trend). Based on the compilation plots of published compaction trends of representative sedimentary rocks (sandstone, shale and carbonate), this study estimates the compaction trend ranges with exponential curves and equations. Numerical analysis of sedimentary compaction is performed to evaluate the variation of porosity and layer thickness with depth at key curves within the compaction trend ranges. In sandstone, initial porosity lies in a narrow range and decreases steadily with increasing depth, which results in relatively constant thickness variations. For shale, the porosity variation shows two phases which are fast reduction until ~2,000 m in depth and slow reduction at deeper burial, which corresponds to the thickness variation pattern of shale layers. Carbonate compaction is characterized by widely distributed porosity values, which results in highly varying layer thickness with depth. This numerical compaction analysis presents quantitatively the characteristics of porosity and layer thickness variation of each lithology, which influence on layer thickness reconstruction, subsidence and thermal effect analyses to understand the basin formation and evolution. This work demonstrates that the compaction trend is an important factor in basin modelling and underlines the need for appropriate application of porosity data to produce accurate analysis outcomes.

A Study on the Verification of an Indoor Test of a Portable Penetration Meter Using the Cone Penetration Test Method (자유낙하 콘관입시험법을 활용한 휴대용 다짐도 측정기의 실내시험을 통한 검증 연구)

  • Park, Geoun Hyun;Yang, An Seung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.41-48
    • /
    • 2019
  • Soil compaction is one of the most important activities in the area of civil works, including road construction, airport construction, port construction and backfilling construction of structures. Soil compaction, particularly in road construction, can be categorized into subgrade compaction and roadbed compaction, and is significant work that when done poorly can serve as a factor causing poor construction due to a lack of compaction. Currently, there are many different types of compaction tests, and the plate bearing test and the unit weight of soil test based on the sand cone method are commonly used to measure the degree of compaction, but many other methods are under development as it is difficult to secure economic efficiency. For the purpose of this research, a portable penetration meter called the Free-Fall Penetration Test (FFPT) was developed and manufactured. In this study, a homogeneous sample was obtained from the construction site and soil was classified through a sieve analysis test in order to perform grain size analysis and a specific gravity test for an indoor test. The principle of FFPT is that the penetration needle installed at the tip of an object put into free fall using gravity is used to measure the depth of penetration into the road surface after subgrade or roadbed compaction has been completed; the degree of compaction is obtained through the unit weight of soil test according to the sand cone method and the relationship between the degree of compaction and the depth of the penetration needle is verified. The maximum allowable grain size of soil is 2.36 mm. For $A_1$ compaction, a trend line was developed using the result of the test performed from a drop height of 10 cm, and coefficient of determination of the trend line was $R^2=0.8677$, while for $D_2$ compaction, coefficient of determination of the trend line was $R^2=0.9815$ when testing at a drop height of 20 cm. Free fall test was carried out with the drop height adjusted from 10 cm to 50 cm at increments of 10 cm. This study intends to compare and analyze the correlation between the degree of compaction obtained from the unit weight of soil test based on the sand cone method and the depth of penetration of the penetration needle obtained from the FFPT meter. As such, it is expected that a portable penetration tester will make it easy to test the degree of compaction at many construction sites, and will lead to a reduction in time, equipment, and manpower which are the disadvantages of the current degree of compaction test, ultimately contributing to accurate and simple measurements of the degree of compaction as well as greater economic feasibility.

Evaluation of Compaction Quality Control applied the Dynamic Cone Penetrometer Test based on IoT (다짐품질관리를 위한 IoT 기반 DCPT 적용 평가)

  • Jisun, Kim;Jinyoung, Kim;Namgyu, Kim;Sungha, Baek;Jinwoo, Cho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Generally, the plate load test and the field density test are conducted for compaction quality control in earthwork, and then additional analysis. Recently developed that the DCPT (Dynamic Cone Penetration Test) equipment for smart compaction quality control its the system are able to get location and real-time information about worker history management. The IoT-based the DCPT system improved the time-cost in the field compared traditional test, and the functions recording and storage of the DPI (Dynamic Cone Penetration Index) were automated. This paper describes using these DCPT equipment on in-situ and compared to the standards of the DCPT, and the compaction trend had be confirmed with DPI as the field test data. As a result, the DPI of the final compaction decreased by 1.4 times compared to the initial compaction, confirming the increase in the compaction strength of the subgrade compaction layer 10 to 14 cm deep from the surface. A trend of increasing compaction strength was observed. This showed a tendency to increase the compaction strength of the target DPI proposed by MnDOT and the results of the existing plate load test, but there was a difference in the increase rate. Therefore, additional studies are needed on domestic compaction materials and laboratory conditions for target DPI and correlation studies with the plate load tests. If this is reflected, it is suggested that DCPT will be widely used as smart construction equipment in earthworks.

Compactability of various asphalt mixtures using warm mix additive (준고온 첨가제를 사용한 각종 아스팔트 혼합물의 다짐도 변화 연구)

  • Park, Tae-Soon
    • International Journal of Highway Engineering
    • /
    • v.11 no.4
    • /
    • pp.127-132
    • /
    • 2009
  • This study presents the test results on the compaction characteristics of warm mix asphalt mixtures that include the additive in 3 different mixtures(hot mix asphalt, SBS and SMA). The tests were conducted to find out the compaction characteristics on the compactability with varying compaction time, different amount of the warm mix additive and lowering the compaction temperature. The Superpave gyratory compactor was used to find out the variation of the density when the number of the gyration is varied. A dense mixture and 3 different warm mix additives were employed to find the relationship between compactability and compaction time. The comparison of the compactability with lowering the temperature was conducted using dense mixture, SBS polymer modified mixture and stone matrix asphalt mixture(SMA). The difference of the density of warm mix asphalt mixtures was not found due to the lowering of compaction temperature when it was compared with the standard mixture and the warm mix showed the stable condition in density. In the mean time, depending upon the different warm mix additive and mixture, the difference of density and the variation trend of compaction is found to be existed and shows the relationship between these two variables.

  • PDF

Quality of root canal fillings using three gutta-percha obturation techniques

  • Ho, Edith Siu Shan;Chang, Jeffrey Wen Wei;Cheung, Gary Shun Pan
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.22-28
    • /
    • 2016
  • Objectives: The goal of this study was to compare the density of gutta-percha root fillings obturated with the following techniques: cold lateral (CL) compaction, ultrasonic lateral (UL) compaction, and warm vertical (WV) compaction. Materials and Methods: Thirty-three extracted mandibular first molars, with two separate mesial canals in each, were selected. After instrumentation, the canals were stratified into three groups based on canal length and curvature, and underwent obturation with one of the techniques. No sealer was used in order to avoid masking any voids. The teeth were imaged pre- and post-obturation using micro-computed tomography. The reconstructed three-dimensional images were analyzed volumetrically to determine the amount of gutta-percha present in every 2 mm segment of the canal. P values < 0.05 were considered to indicate statistical significance. Results: The overall mean volume fraction of gutta-percha was $68.51{\pm}6.75%$ for CL, $86.56{\pm}5.00%$ for UL, and $88.91{\pm}5.16%$ for WV. Significant differences were found between CL and UL and between CL and WV (p < 0.05), but not between UL and WV (p = 0.526). The gutta-percha density of the roots treated with WV and UL increased towards the coronal aspect, but this trend was not noted in the CL group. Conclusions: WV compaction and UL compaction produced a significantly denser gutta-percha root filling than CL compaction. The density of gutta-percha was observed to increase towards the coronal aspect when the former two techniques were used.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

The Analysis of Indirect Tensile Strength (ITS) Characteristic using Physical Properties of Asphalt Mixtures (아스팔트 혼합물의 물리적 특성을 이용한 간접인장강도의 특성 분석)

  • Lee, Moon Sup
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2014
  • PURPOSES : This study was performed to evaluate the possibility of Indirect Tensile Strength (ITS) as a testing method that can predict cracking on pavement. METHODS : Three asphalt binders and one kind of aggregate were used in this study, and all asphalt mixtures were produced using Gyratory Compactor followed asphalt mix design. The ITS test was performed for the mixture which are artificially short-term aged using the oven. The ITS properties were analyzed by air void, compaction temperature, asphalt content, and asphalt binder. RESULTS : The results of this study indicated that (1) the compaction temperature did not show relationship with the ITS test; (2) there was no specific trend between the asphalt content and the ITS test; (3) the ITS could reveal the property of kinds of asphalt binders; (4) the asphalt mixture that were produced at optimum temperature suggested by manufacturer did not exhibit optimum result for all asphalt binder. CONCLUSIONS : The possibility of ITS was confirmed from this study for replacement of the Marshall Stability method. However, it needs to perform in further studies of aggregate and compaction property to suggest a new ITS standard value.

The Worldwide Trend of waste Treatment Technology and DAEWOO-TS Gasification & Melting System (세계의 폐기물처리기술 동향과 DAEWOO-TS 열분해 가스화 용융기술)

  • 허일상;김우봉
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.103-114
    • /
    • 2001
  • Worldwide trend of waste treatment technology is rapidly transferring from "incineration system" to "gasification & melting system" which can derive the resources from waste and charge no more environmental burden to nature. And therefore it is necessary for our country to adopt gasification & melting system urgently to present the land pollution and lack of landfill area. Among several gasification and melting processes Daewoo-Thermoselect gasification and melting system is the representative process which can transfer waste to resources such as sin-gas, molten slag, metal hydroxide, mixed salt and sulfur through the process of compaction, degasification, gasification and melting.

  • PDF

An Experimental Investigation of the Variations of the Elastic Wave Velocities with Compaction Energy for Railway Roadbed Materials (다짐 에너지를 고려한 노반 성토 재료의 탄성파 속도 변화의 실험적 분석)

  • Kim, Hak-Sung;Jung, Young-Hoon;Mok, Young-Jin;Lee, Jin-Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1037-1047
    • /
    • 2013
  • A systematic laboratory compaction testing was performed with the laboratory seismic measurements of the compacted specimens sampled from various compaction fills and was supplemented with in-situ seismic testing to investigate the effects of compaction energy on the elastic wave velocities of the railway roadbed materials. The both variances of the compressive and shear wave velocities with moisture content curve ($V_p$-w and $V_s$-w curves) are similar to the general trend of the density-moisture content curve(${\gamma}_d$-w curve). At the wet side of optimal moisture content (OMC), either $V_p$ or $V_s$ does not significantly increase, which is well reflecting the no gaining in density with the increasing compaction energy exceeding modified-D compaction effort. $V_p$ increases linearly with ${\gamma}_d$ at the dry side of OMC, while it does exponentially at the wet side. The in-situ wave velocities were found to be influenced by the level of confinement and $V_s$ was more sensitive to compaction energy than $V_p$.

Geotechnical Properties of Soil-Bentonite Mixtures (흙-벤토나이트 혼합물의 지반공학적 특성)

  • 채교익;권무남
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.132-144
    • /
    • 2001
  • Iln order to figure out criteria of bentonite for using as impervious material of waste landfill, laboratory experiments were performed to reveal the geotechnical properties of soil-bentonite mixtures such as compaction test, direct shear test, unconfined compression test, triaxial compression test, consolidation test and permeability test. The results of the study are summarized as follows ; 1. Based on the compaction test, optimum moisture content increased with the increase of bentonite content, but maximum dry density decreased. 2. In unconfined compression test, the maximum strength of the soil-bentonite mixtures appeared at 10% bentonite content. The correlation equation between stress($\sigma$) and strain($\varepsilon$) of the soil-bentonite mixtures is given by ; $\sigma=\frac{a\cdot\varepsilon}{\varepsilon^n+b}$ 3. In shear test of the mixtures. the shear strength showed an increasing trend with increase of bentonite content and the maximum shear strength appeared at 10% bentonite content. 4. In consolidation test, the coefficient of compressibility $(a_v)$$(m_v)$$(C_v)$

  • PDF