• Title/Summary/Keyword: compaction density

Search Result 423, Processing Time 0.031 seconds

Effect of the Forming Condition on Flexural Strength of Green and Sintered Bodies of Tungsten Carbide for Cutting Tool (절삭공구용 초경합금의 성형체 및 소결체의 강도에 미치는 성형조건의 영향)

  • 이재우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.796-799
    • /
    • 2004
  • The effects of forming presure, organic binder content and moisture on flexural strength were investigated. As moisture content increased in the granules during compaction, the density and strength of the green body were increased. Green strengths were found to improve more strongly with increasing forming pressure in the case of using the granules of higher organic content. The sintered strength was the highest with the organic content of 0.2wt% under all forming pressures.

  • PDF

The Analysis Density Analysis of SMC Motor core by compaction method (SMC를 이용한 모터 코어의 성형 방법에 따른 밀도 특성 분석)

  • Lee, Sung-Ho;Lee, Gyu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.10c
    • /
    • pp.36-38
    • /
    • 2007
  • 본 논문은 연자성체를 이용한 모터코어 성형 시 성형 방법에 따른 밀도 특성에 대한 연구이다. 밀도는 성형된 연자성체에서 자기적 특성에 가장 큰 영향을 미치는 인지로써 모터 설계 시 큰 영향을 준다. 본 연구에서는 단동식, 복동식 압분 방법에 대한 밀도 분포의 고찰을 실시하였고, 복동식의 평균 밀도가 단동식 보다 향상됨을 알 수 있었다. 또한 성형 방법에 따른 밀도의 분포도를 작성하여 모터 코어 각 부분에서 밀도의 분포 추이를 파악 할 수 있었으며, 향후 이를 이용한 모터 설계의 표준을 제공 할 수 있을 것으로 사료된다.

  • PDF

Analyses of Densification and Plastic Deformation during Equal Channel Angular Pressing of CNT/Cu Powder Mixtures (CNT/Cu 혼합분말의 ECAP 공정 시 치밀화 및 소성변형 거동 해석)

  • Quang, P.;Yoon, S.C.;Jeong, Y.G.;Kim, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.123-126
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF

Powder Characteristics by Change of Reacting Material in Nuclear Fuel Powder Preparation (핵연료분말 제조에서 반응물질의 변화가 분말의 특성에 미치는 영향)

  • 정경채;박진호;황성태
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.631-636
    • /
    • 1996
  • The powder characteristics of UO2 via AUC prepared by precipitation from a UN with AC soiution produced from nuclear fuel powder conversion plant and that of the existing facility were compared. Mean particle size of AUC powder was decreased and agglomerates were much occured in case of using the AC solution that that of the gases but other properties such as particle size distribution and shape of particle are thought to be similarly. In compaction of UO2 powder the breaking pressur of agglomerated UO2 powder and the sintered density of final UO2 pellet from AC solution were measured 1.45$\times$108 N/m2 and 10.52 g/cc, These values could be used in nuclear fuel powder fabrication process.

  • PDF

A Finite Element Analysis for Near-net-shape Forming of Al6061 Powder under Warm Pressing (온간 성형 하에서 Al 합금 분말의 정밀정형에 대한 유한요소해석)

  • Kim, Ki-Tae;Yang, Hoon-Chul;Kim, Jong-Kwang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.507-512
    • /
    • 2003
  • A finite element analysis for near-net-shape forming of Al6061 powder was performed under warm pressing. The advantages of warm compaction by rubber isostatic pressing were discussed to obtain parts with better density distributions. To simulate densification and deformed shape of a powder compact during warm pressing, the elastoplastic constitutive equation based on yield function of Shima-Oyane was implemented into a finite element program(ABAQUS). The hyperelastic constitutive equation based on the Ogden strain energy potential was employed to analyze nonlinear elastic response of rubber. Finite element results were compared with experimental data for Al6061 powder compacts under warm pressing.

  • PDF

Effect of Pretreatments on Graphene Coated Bipolar Plate of PEMFC on Electrochemical (전처리가 그래핀을 코팅한 고체고분자 연료전지 분리판의 전기화학적 특성에 미치는 영향)

  • Cha, Seong-Yun;Lee, Jae-Bong
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.224-232
    • /
    • 2014
  • Effect of pretreatments on the graphene coated bipolar plate of proton exchange membrane fuel cell(PEMFC) was investigated in simulated environments for PEMFC by using electrochemical measurement techniques. Interfacial contact resistance(ICR) between the graphene coated bipolar plate and the gas diffusion layer(GDL) was measured. The value of ICR decreased with an increase in compaction stress($20N/cm^2{\sim}220N/cm^2$). ICR of graphene coated bipolar plate was higher than that of bare 316L stainless steel. However, Potentiodynamic measurement results showed that the corrosion resistance of graphene coated bipolar plate was higher than that of bare 316L stainless steel. $H_2SO_4$ acid pretreatment was the most effective among various pretreatments. The lowest ICR and the corrosion current density were obtained when using $H_2SO_4$ solution pretreatment.

In-Situ Measurement of Densification Behavior of Nano Cu Powders during Sintering (In-Situ 측정에 의한 나노 Cu 분말의 소결 공정 시 치밀화 거동)

  • Yoon, S.C.;Bok, C.H.;Kwak, E.J.;Rhee, C.K.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.3 s.93
    • /
    • pp.210-214
    • /
    • 2007
  • Manufacturing bulk nanostructured materials with least grain growth from initial powders is challenging because of the bottle neck of bottom-up methods using the conventional powder metallurgy via compaction and sintering. In the study, densification behavior of nano Cu powders during pressureless sintering was investigated using an in-situ optical dilatometer technique. The initial heating and steady temperature stages during the sintering of nano Cu powder compacts were observed. At the initial heating stage, the powder compact has many porosities and full densification needs high temperature and/or high pressure sintering. In the experimental analysis, changes in geometry and density were measured and discussed for optimal consolidation and densification by the in-situ optical dilatometer.

The Gamma-Ray Detection Circuit design of RI Use Instrument for Hand Carry (휴대용 RI 이용 계기의 감마선 검출 회로설계)

  • Seong, Nak-Jin;Kim, Sang-Jin;Kim, Ki-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.154-158
    • /
    • 2003
  • In this study, to measure the density of compaction, it is designed to use the 5 gamma-ray detectors. The developed instrument consists of measuring circuits for gamma-rays and thermal neutrons, a high voltage supply unit, stable circuit unit, count circuit unit and a microprocessor. To read count pulse from gamma-ray detectors are very accurate and it can be count to data calibration excluded count of ripple.

  • PDF

Densifcation Behavior of Iron Powder During Cold Stepped Plastic Deformation (냉간 다단 소성변형하에서의 철분말의 치밀화 거동)

  • Kang Chunsung;Lee Sungchul;Kim KiTae;Rozenberg Oleg
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.10 s.241
    • /
    • pp.1344-1352
    • /
    • 2005
  • Densification behavior of iron powder under cold stepped plastic deformation was studied. Experimental data were also obtained for iron powder under cold stepped plastic deformation. The elastoplastic constitutive equation based on yield function of Shima and Oyane was implemented into a finite element program (ABAQUS) to simulate compaction responses of i.on powder during cold stepped plastic deformation. Finite element calculations were compared with experimental data for densification, deformed geometry and density distribution. The agreement between finite element results and experimental data was good for iron powder.

Carbon Nanotube Reinforced Metal Matrix Nanocomposites via Equal Channel Angular Pressing

  • Quang, Pham;Jeong, Young-Gi;Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Soon-Hyung;Kim, Hyoung-Seop
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.980-981
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve full density of Carbon nanotube (CNT)/metal matrix composites with superior mechanical properties by improved particle bonding and least grain growth, which were considered as a bottle neck of the bottom-up method using the conventional powder metallurgy of compaction and sintering. ECAP (equal channel angular pressing), the most promising method in SPD, was used for the CNT/Cu powder consolidation. The powder ECAP processing with 1, 2, 4 and 8 route C passes was conducted at room temperature.

  • PDF