• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.031 seconds

A Study on the Applicability of Slag as Compaction Pile Material (다짐말뚝 채움재로서 슬래그의 적용성 연구)

  • 이미혜;이상익;박용원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.207-214
    • /
    • 2000
  • Sand Compaction Pile method is one of the widely used ground improvement techniques at loose sand or soft clay ground in Asian countries. However, due to environmental and economical problems concerning shortage of sand resources alternative materials are needed to substitute sand for SCP. This study is on the applicability of slag as an alternative material SCP. Consolidation and direct shear test are performed for the slag-clay composite specimens to find out the positive effects of consolidation rate and shear resistance of slag reinforced ground. The result shows that slag has similar effects with sand in consolidation and shear resistance behavior in composite ground, which says slag can be used as alternative material of sand for SCP.

  • PDF

Analysis for Cold Die Compaction of Meteal Powder (금속분말의 냉간금형 압축 해석)

  • Gwon, Yeong-Sam;Lee, Hui-Tae;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.6
    • /
    • pp.1893-1902
    • /
    • 1996
  • Densification behavior of 316L stainless steel power under die pressing was studied. The efects of friction between the powder and die wall under different die pressing modes were also investigated. The elastoplastic constitutive equations based on the yield functions of Fleck-Gurson and of Shima and Oyane were implemented into finite element program(ABAQUS) to simulate die compaction processes. The finite element results were compared with experimental data for 316L stainless steel powder under die pressing.

Compaction Simulator Study on Pectin Introducing Dwell Time

  • Kim, Hyun-Jo;Venkatesh, Gopi
    • Journal of Pharmaceutical Investigation
    • /
    • v.35 no.4
    • /
    • pp.243-247
    • /
    • 2005
  • Although many scientists have used pectin, its feasibility in terms of tablet manufacturability with a high speed machine has never been evaluated. Therefore, compactibility of different pectin types for large scale tableting operation has been evaluated. The compactibility behavior of powder pectins was studied by a compaction simulator. It was found that pectin on its own does not produce tablets of acceptable quality even at a punch velocity as low as 20 rpm (e.g. low tensile strengths, capping and lamination irrespective of applied compression force). Thus, dwell time was introduced and more hard compact was produced as relaxation time in die increases. It was concluded that frequent structural failure observed in both pectin types was due to lack of plastic deformation, poor compactibility and high elastic recovery.

A Estimate Method of the Consolidation Yield Stress in Compacted soil using the Mechanical Characteristics of Unsaturated soil (불포화토의 역학적 특성을 이용한 다짐토의 항복응력의 산정방법)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.121-128
    • /
    • 2005
  • This paper introduces a method of predicting the behavior of compacted soil with an unsaturated soil mechanics by considering the effect of suction as an increasing consolidation yield stress. Two kinds of experiments were conducted. One is a series of static compaction tests to monitor the suction, and the other is a series of compression tests on compacted soil without soaking. The results of our tests indicate that it is possible to derive the distribution of suction on compaction curves and to hypothesize the changes in void ratio in the compression tests that depends on the suction. In addition, a new method is proposed to estimate the consolidation yield stress of compacted soil with a simple chart including compaction curves.

  • PDF

Densification Analysis for SiC Powder under Cold Compaction (냉간압축 하에서 실리콘 카바이드 분말의 치밀화해석)

  • Park, Hwan;Kim, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2000
  • Densification behavior of SiC powder was investigated under cold compaction. A special form of the Cap model was proposed from experimental data of SiC powder under triaxial compression. To compare with experimental data of SiC powder under cold compaction, the proposed constitutive model was implemented into a finite element program (ABAQUS). Finite element calculations from the Cam-Clay model and the modified Drucker-Prager model were also compared with experimental data of SiC powder. The agreements between experimental data and finite element results obtained from the proposed constitutive model are reasonably good. In die pressing, finite element results obtained from the Cam-Clay model and the modified Drucker-Prager model, however, show lower average density of SiC powder compacts compared to experimental data.

  • PDF

Densification Behavior of Fe-Ni Alloy Nanoparticles

  • Kim, Sang-Phil;Lee, Woo-Seok;Lee, Jae-Wook;Choi, Chul-Jin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.531-532
    • /
    • 2006
  • The effects of compaction pressure and sintering temperature on the densification of Fe-40wt%Ni alloy nanoparticles were analyzed. The Fe-Ni nanoparticles were fabricated by an arc-discharge method and then, compacted at three different pressures and sintered at 550 to $900\;^{\circ}C$. Densification was completed at temperature as low as $600\;^{\circ}C$ and high-pressure compaction was found to enhance densification. Densification behaviors and microstructure developments have been investigated through density measurements, electron microscopies, and hardness measurements.

  • PDF

Prediction of Long-Term behavior of polyethylene pipe buried underground (지중매설 폴리에틸렌 관의 장기거동 예측)

  • Lee, Jae-Ho;Kim, Bin;Yoon, Soo-Hyun;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.

Compaction and strength behavior of lime-coir fiber treated Black Cotton soil

  • Ramesh, H.N.;Manoj Krishna, K.V.;Mamatha, H.V.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.19-28
    • /
    • 2010
  • This paper describes the compaction and strength behavior of black cotton soil (BC soil) reinforced with coir fibers. Coir used in this study is processed fiber from the husk of coconuts. BC soil reinforced with coir fiber shows only marginal increase in the strength of soil, inhibiting its use for ground improvement. In order to further increase the strength of the soil-coir fiber combination, optimum percentage of 4% of lime is added. The effect of aspect ratio, percentage fiber on the behavior of the composite soil specimen with curing is isolated and studied. It is found that strength properties of optimum combination of BC soil-lime specimens reinforced with coir fibers is appreciably better than untreated BC soil or BC soil alone with coir fiber. Lime treatment in BC soil improves strength but it imparts brittleness in soil specimen. BC soil treated with 4% lime and reinforced with coir fiber shows ductility behavior before and after failure. An optimum fiber content of 1% (by weight) with aspect ratio of 20 for fiber was recommended for strengthening BC soil.

A Study on the Consolidation Behavior of Cohesive Soils Improved by Penetrated and Partly Penetrated Sand Compaction Piles (관통 및 미관통 SCP 개량지반의 압밀거동 비교연구)

  • Kim, Young-Nam;Chae, Young-Su;Lee, Kang-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.706-713
    • /
    • 2004
  • This paper introduced an alternative method called USCP (Unpenetrated Sand Compaction Pile). In USCP, the toe of the sand pile does not reach to the lower supporting layer. Hence it is possible to reduce the amount of sand required. However, the degree of improvement could not be the same as SCP. Effective soil improvement, nevertheless, might be possible by combining both methods. In this paper, an improved method that cross over both SCP and USCP was discussed. And in order to verify applicability to a clay layer, consolidation behaviors with different conditions were analyzed and compared using FEM(Finite Element Method) based on the elasto-viscosity theory. From the results, it is concluded for the characteristic of settlement of USCP that the lower degree of replacement and the smaller ratio of penetration($H_d/H$), the larger is the settlement of the lower part of the clay layer comparing to the layer with no improvement. It is also concluded that the ratios of allotment of stress (m) calculated from the final settlements with 30% of degree of replacement are $1.8{\sim}3.3$ for $H_d/H=lOO%,\;1.8{\sim}4.0\;for\;H_d/H=75%,\;and\;1.8{\sim}3.8\;for\;H_d/H=50%$. Besides, the ratio of allotment of stress decreased as the degree of replacement decreased.

  • PDF

Behavior of Soft Ground Treated with Sand Compaction Piles and Sheet Piles (모래다짐말뚝과 널말뚝으로 처리된 연약점토지반의 거동)

  • Yoo, Nam-Jae;Jeong, Gil-Soo;Park, Byung-Soo;Kim, Kyung-Soo
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.93-99
    • /
    • 2006
  • Centrifuge model experiments were performed to investigate the confining effects of the sheet piles, installed to the sides of soft clay ground treated with sand compaction piles, on the bearing capacity and concentration ratio of composite ground. For the given g-level in the centrifuge model tests, replacement ratio of SCP and the width of surcharge loads on the surface of ground with SCP, the confining effects of installing the sheet piles on the edges of SCP ground on the bearing capacity, change of stress concentration ratio and failure mechanism were investigated. Kaolin, one of typical clay mineral, and Jumunjin standard sand were used as a soft clay ground and sand compaction pile irrespectively. As results of experiments, lateral confining effect by inserting the model sheet piles fixed to the loading plate was observed. For the strip surcharge loading condition, the yielding stress intensity in the form of the strip surcharge loads tends to increase with increasing the embedded depth of sheet piles. The stress concentration ratio was found not to be influenced consistently with the embedded depth of sheet piles whereas the effect of stress intensity on stress concentration ratio shows the general trend that values of stress concentration ratio are relatively high at the initial stage of loading and tend to decrease and converge to the certain values. For the failure mechanism in the case of reinforced with sheet piles, displacement behavior related to the punching failure, settlement right beneath the loading plate occurred since the soil was confined with sheet piles, was observed.

  • PDF