• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.025 seconds

Densification of TiO2 Nano Powder by Magnetic Pulsed Compaction (자기펄스 성형법에 의한 TiO2 나노 분말의 치밀화)

  • Kim, Hyo-Seob;Lee, Jeong-Goo;Rhee, Chang-Kyu;Koo, Jar-Myung;Hong, Soon-Jik
    • Korean Journal of Materials Research
    • /
    • v.18 no.8
    • /
    • pp.411-416
    • /
    • 2008
  • In this research, fine-structure TiO2 bulks were fabricated in a combined application of magnetic pulsed compaction (MPC) and subsequent sintering and their densification behavior was investigated. The obtained density of $TiO_2$ bulk prepared via the combined processes increased as the MPC pressure increased from 0.3 to 0.7 GPa. Relatively higher density (88%) in the MPCed specimen at 0.7 GPa was attributed to the decrease of the inter-particle distance of the pre-compacted component. High pressure and rapid compaction using magnetic pulsed compaction reduced the shrinkage rate (about 10% in this case) of the sintered bulks compared to general processing (about 20%). The mixing conditions of PVA, water, and $TiO_2$ nano powder for the compaction of $TiO_2$ nano powder did not affect the density and shrinkage of the sintered bulks due to the high pressure of the MPC.

Study on Test Method for Strength of Ceramic Spray Dried Powder (분무 건조된 세라믹 과립의 강도 측정방법에 대한연구)

  • 엄우식;이희수;이세훈;김덕희;이인식
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.6
    • /
    • pp.660-664
    • /
    • 1996
  • We have studied the test method for strength of spray dried ceramic powder using manual press and UTM. which is one of the important to influence forming process. We could observe the compaction behavior using manual press. However the measurement of granule strength was only possible with UTM capable of providing the condition of a constant pressing rate. The strength of granule can be measured from the slope change of compaction curve and agrees with the value which is obtained from the combination of saturated tap density and compaction curve. So we proposed the accurate method to measure the strength of granule from the results of this study.

  • PDF

A Study on Interaction Factor of Granular Compaction Piled Raft (조립토 Piled Raft의 상호작용계수에 관한 연구)

  • 신방웅;채현식;김홍택;강인규;박사원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.269-276
    • /
    • 2000
  • Granular compaction piled raft systems have been effectively used in soft ground foundation to improve not only settlement but also bearing capacity. In the present study, to examine the behavior characteristics and bulging failure zone on granular compaction piled raft system, carbon rod tests have been performed. The test results are compared with the zone of bulging failure and the effects of pile-pile interaction obtained from the analytical approaches. In addition, parametric studies are peformed with considering pile slenderness ratio, Poisson's ratio and load sharing ratio.

  • PDF

A Densification Model for Mixed Metal Powder under Cold Coompaction (냉간압축하에서 혼합금속분말의 치밀화 모델)

  • 조진호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.112-118
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms of volume fractions and contact numbers of Cu powder new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data for densificatiojn of mixed powder under cold isostatic pressing and cold die compaction. finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

  • PDF

Studies on Preparation of $Ti_3SiC_2$ Particulate Reinforced Cu Matrix Composite by Warm Compaction and its Tribological Behavior

  • Ngai, Tungwai L.;Xiao, Zhiyu;Wu, Yuanbiao;Li, Yuanyuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.853-854
    • /
    • 2006
  • Warm compaction powder metallurgy was used to produce a $Ti_3SiC_2$ particulate reinforced Cu matrix composite. Fabrication parameters and warm compaction behaviors of Cu powder were studied. Based on the optimized fabrication parameters a Cu-based electrical contact material was prepared. Results showed that in expend of some electrical conductivity, addition of $Ti_3SiC_2$ particulate increased the hardness, wear resistivity and anti-friction ability of the sintered Cu-base material.

  • PDF

A Case Study Of Dynamic Compacted Rock Embankment Design Considering Long Term Behavior (장기침하를 고려한 고성토 암버력 동다짐 지반의 설계사례)

  • Bae, Kyung-Tae;An, Sang-Yik;Park, Yong-Man;Kim, Kang-Kyu;Kim, Hyung-Suk;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.967-975
    • /
    • 2009
  • In order to control differential settlement and to secure the safety of super structure on a high rock embankment the designed static compaction is changed with dynamic compaction and piled raft method. The parameters for dynamic compaction design are obtained from a pilot test. In addition, numerical analyses are also carried out to figure out the length and quantity of piled raft that can restraint the differential settlement within allowance range.

  • PDF

Development of Admixed Lubricant for Warm Die and Warm Compaction of High-Density PM Iron

  • Min Chul Oh;Byungmin Ahn
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.3
    • /
    • pp.679-682
    • /
    • 2021
  • The objective of the present research is to develop new admixed lubricants which can be used for high-density sintered iron when processed using warm die and warm compaction. Depending on various lubricants, the effect of compaction temperature on the ejection behavior and sintered properties was studied. Lubricants were prepared by mixing of Zn-stearate and ethylene bis stearamide (EBS) in various compositions. The iron powders blended with lubricants were compacted under the pressure of 700 MPa at various temperatures. The green compacts were sintered at 1120℃ for 30 min. Microstructure, density, hardness, and transverse rupture strength of sintered materials with different lubricants were investigated in detail.

Evaluation of Mechanical Characteristics and Applicability of Clayey Sand by Fines Content (세립분 함유율에 따른 점토질 모래의 역학적 특성 및 적용성 평가)

  • Jung-Meyon Kim;Jun-Young Ahn;Jae-young Heo;Seung-Joo Lee;Young-Seok Kim;Beom-Soo Moon;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.47-59
    • /
    • 2023
  • In this research, laboratory tests were conducted on clayey sand (SC) to analyze its physical properties, compaction/permeability characteristics, and stress-strain behavior. The main objective was to determine the transitional fines content at which the mechanical properties of sand transition to those of clay, resulting in a change in the geotechnical behavior of the material. Additionally, to assess the practical applicability of SC soil, field data from a soft ground improvement site with significant settlement issues were collected. The settlement characteristics derived from laboratory tests and numerical simulations were then compared and analyzed in relation to the actual settlement data obtained from the field, aiming to evaluate the suitability of the SC soil as a compaction target layer. The laboratory tests and compaction analysis showed that the SC soil exhibited a distinct change in mechanical properties, shifting from sandy behavior to clayey behavior when the fines content exceeded 25%. This transition in mechanical behavior was found to be closely correlated with the content of clay particles within the material. Through numerical simulations of the soft ground site, it was verified that the use of clayey sand with a fines content exceeding the transitional level as a compaction target layer resulted in settlements that closely aligned with the measured settlements, with an average agreement of 91.2%. Based on these findings, it is deemed advisable to incorporate clayey sand with a fines content exceeding the transitional level as part of the compaction target layer in the design of soft ground improvements.

A Study on the Confined Effects of Highly Moistured Soils Reinforced with Geosynthetics (토목섬유가 보강된 고함수비 흙의 구속효과에 관한 연구)

  • Yoo, Jae-Won;Im, Jong-Chul;Kang, Sang-Kyun;Lee, Hyung-Jun;Choi, Moon-Bong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.25-37
    • /
    • 2019
  • This study confirms reinforcing effect of geosynthetics in the use of soil at higher water contents as a compaction material on compaction tests, field compaction tests, and numerical analysis. To verify a confined effect, a large mold(area ratio of rammer / mold = 0.19) larger than D compaction mold(area ratio of rammer / mold = 0.33) was performed for compaction. It showed that in the D compaction test, dry density were 0.5~0.6% increases and in the compaction test using the large mold, it were 2.4~3.7% increases at high water contents. It shows that when the area of compacted area is large enough, a confined effect could be arising from the reinforcement of geosynthetics even at high water contents. As a result of analyzing of compaction effects according to 'depth(z/B) from compacted surface' in the field, when not reinforced, the compaction state deteriorated due to the over-compaction and the compaction did not work well. However, when reinforcement of geosynthetics, restraint effect by geosynthetics occurs, it is confirmed that the compaction energy is effectively transferred to the compaction layer and the dry density is increased. Also, through the conceptual model of the behavior of geosynthetic and soil layer, the mechanism in the ground due to reinforcement of geosynthetics is presented and it is verified through finite element analysis.

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders (몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구)

  • Kim, Young-Moo
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.