• Title/Summary/Keyword: compaction behavior

Search Result 241, Processing Time 0.048 seconds

Application of sand compaction pile method of row replacement ratio as foundation of the dyke (호안기초로서 저치환율 모래다짐말뚝 공법의 적용)

  • Jin, Sung-Ki;Kim, Bum-Hyung;Kim, Jong-Seok;Im, Jong-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.472-485
    • /
    • 2008
  • In this study, sand compaction pile method was adopted to improve the soft ground under the permanent dyke, namely west sea dyke of Incheon New Port. The row replacement ratio 30% was applied to consider the ground condition, environmental side and the construction cost of the site. The stability and displacement analysis was carried out by respectively SLOPE/W and PLAXIS 2D program. Based on this analysis, it is found that the safety factor and displacement is within an allowable criteria. The model experiment was carried out using the acryl soil box with $400(H){\times}1200(L){\times}250(W)mm$ to show the displacement of the dyke and behavior of soft ground. Based on this experiment results, it is found that the settlement does not occur from 1 and 2 loading phases and horizontal displacement of 0.0075% occurs from 2 phases. It is also found that the differential settlement occurs 0.05mm corresponding respectively 0.02% and 0.03% of the dyke height(15cm).

  • PDF

Two Dimensional Finite Element Analysis on the Composite Ground Improved by Sand Compaction Piles with Low Area Replacement Ratio (저치환율 SCP 복합지반의 2차원 유한요소 해석기법 개발과 적용)

  • Shin, Hyun-Young;Han, Sang-Jae;Kim, Soo-Sam;Kim, Jae-Kwon;Sym, Sung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.394-401
    • /
    • 2006
  • This study developed two dimensional finite element program(FE-SCP) for the analysis of a composite ground reinforced by sand compaction piles with a low area replacement ratio based on the Mohr-Coulomb elastic perfectly plastic constitutive model. Program FE-SCP give some conveniences to users such as automatic mesh generation according to the replacement ratio and the effective sand pile diameter in the post processor. Also, it contains optimum processor in calculation of In-situ stress equilibrium considering different coefficient of earth pressure between sand pile and surrounding clay. Estimated stress-strain behavior using FE-SCP and the measured one from a centrifuge test showed good agreement comparing to the result from a general finite element program.

  • PDF

Study on Lond Transfer Characteristics of Sand Compaction Piles in Soft Soil Deposits (연약지반의 모래다짐말뚝에 대한 하중전이 연구)

  • Kim Jaekwon;Kim Soo-Il;Jung Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.183-196
    • /
    • 2004
  • Sand Compaction Pile (SCP) is a soft-ground improvement technique used for not only accelerating consolidation but also increasing bearing capacity of soils. In this study, laboratory tests and 3-D finite element analysis were peformed to investigate the characteristics of load transfer in SCP with an emphasis on free-strain behavior of piles with low replacement ratios in the range of 30 to $50\%$. Through these focused tests and numerical analyses, we proposed a simplified method to analyze the load transfer characteristics of SCP in soft ground. Moreover, it was shown that estimated normal stresses in SCP using the proposed method were in a reasonable agreement with actual values.

Mechanical Properties of Oil Pollution Sand Due to Changes in the Viscosity of Oil (점도 변화에 따른 유류오염 모래의 역학적 특성)

  • Hong, Seung Seo;Bae, Gu-Jin;Kim, YoungSeok
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.577-585
    • /
    • 2015
  • Contamination of soil due to an oil spill influences its subsequent behavior. An investigation was conducted to study the effect of oil viscosity on compaction characteristics, coefficient of permeability, and shear strength. Water permeability was also determined by using Kerosene, Engine oil, and Crude-oil as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. Direct shear test was conducted to investigate the effect of oil in the pore space in sandy ground. angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand.

Effect of performance method of sand compaction piles on the mechanical behavior of reinforced soft clay

  • Kwon, Jeonggeun;Kim, Changyoung;Im, Jong-Chul;Yoo, Jae-won
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.175-185
    • /
    • 2018
  • Sand Compaction Piles (SCPs) are constructed by feeding and compacting sand into soft clay ground. Sand piles have been installed with irregular cross-sectional shapes, and mixtures of both sand and clay, which violate the design requirement of circular shape according to the replacement area ratio due to various factors, including side flow pressure. Therefore, design assumptions cannot be satisfied according to the conditions of the ground and construction and the replacement area ratio. Two case histories were collected, examined, and interpreted in order to study the effect of the shape of SCPs. The effects of the distortion of SCP shape and the mixture of sand and clay were studied with the results of large direct shear tests. The design internal friction angle was secured with the irregular cross-sectional sand piles regardless of the replacement area ratio. The design internal friction angle was secured regardless of mixed condition when the mixture of sand and clay was higher than the replacement area ratio of 65%. Therefore, systematic construction management is recommended with a replacement area ratio below 65%.

Behavior of Soft Ground Improved with Fully-Partly Penetrated Sand Compaction Piles (관통-미관통 모래다짐말뚝으로 개량된 연약지반의 거동)

  • Jeong, Geunchae;Heo, Yol;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.9
    • /
    • pp.91-99
    • /
    • 2012
  • This study describes the investigation based on centrifuge model tests for the clay ground improved by sand compaction pile. In order to clarify the failure behavior of composite ground improved by partly and fully penetrated SCPs. And, in order to compare the effect of the penetration ratio and the replacement area ratio, nine of the centrifuge tests were carried out. From the test results, settlement reduce ratio in the fully penetrated SCPs ground is bigger than that in the partly penetrated SCPs ground. It is also evaluated that angle of the failure of composite ground improved by SCP are 26, 25, $34^{\circ}$ for As=10%, 22, $29^{\circ}$ for As=30%. And as a result of rigid loading tests, surface displacement decreases linearly with the partly penetration ratio increased.

Centrifuge Model Test on the Bearing Capacity and Failure Mechanism of Composit Ground Improved with Slag Compaction Piles (슬래그 다짐말뚝으로 개량된 복합지반의 지지력 및 파괴메카니즘에 관한 원심모형실험)

  • Yoo Nam-Jae;Park Byung-Soo;Jeong Gil-Soo;Koh Kyung-Hwan;Kim Ji-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.59-67
    • /
    • 2005
  • This paper presents experimental and numerical research results of centrifuge model tests performed to investigate the geotechnical engineering behavior of slag compaction pile as a substitute of sand compaction pile. For centrifuge model tests, bearing capacity of composit soil improved with slag compaction piles, stress concentrations in-between pile and soft clay, settlement characteristics, and failure modes were investigated with slags differing in their relative density. A slag was found to be a good substitute for a sand since the slag compaction pile model showed a greater yield stress intensity up to $30\%$ than the sand compaction pile model under the identical testing conditions. Stress concentration ratio tended to increase with the relative density of slag pile and the clear shear lines in the piles were observed at the depth of $2D{\sim}2.5D$ (D=dia. of model pile) from the top of the piles after loading tests. Numerical analysis with a software of CRISP, implemented with the modified Cam-clay model, was carried out to simulate the results of centrifuge model test. Test results about characteristics of load-settlement curves and stress concentration ratio are in relatively good agreements with numerical estimations.

Unsaturated Soil Properties of Compacted Soil at Sub-Zero Temperature (영하온도에서 다짐된 지반의 불포화 특성)

  • Lee, Jeonghyeop;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.5-13
    • /
    • 2018
  • Recently, construction disasters in thawing season are increasing due to the ground collapse and it is related to the improper compaction during winter season. Compaction at sub-zero temperature reduces the compaction effect and the research of mechanical properties of thawed soil after winter compaction can be used as useful data to understand the behavior of the ground in the thawing season. On the other hand, the research interest in the unsaturated soil mechanics has been increasing in the field of the geotechnical engineering. Therefore, it is expected that the research of unsaturated characteristics under the compaction of sub-zero temperature and freezing & thawing condition provides information to the researchers in the related fields. Therefore, in this research, unsaturated soil-water characteristics test and unsaturated uniaxial compression test were conducted on the specimens compacted at sub-zero temperature and continuous freezing & thawing condition to investigate change of unsaturated characteristics and matric suction. Based on the test results, the change of matric suction and the decrease of strength and stiffness were observed with the freezing & thawing conditions. Especially in case of the weathered soil, the strength and matric suction were significantly reduced with lower temperature and more repetition of freezing & thawing cycles. This result implies that compaction of sub-zero temperature and freezing & thawing cycles will have a considerable influence on the stability of the ground.

Behavior Characteristics of Poorly-Compacted Raised Reservoir Levee with Water Level Raising (다짐시공이 불량한 증고 저수지 제체의 수위상승시 거동)

  • Lee, Chung Won;Kim, Jung Myeon;Moon, Yong Bae;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.6
    • /
    • pp.113-119
    • /
    • 2014
  • This study aims to evaluate the behavior of poorly-compacted raised reservoir levee with water level raising by using centrifugal model test. From the test results, it seems that the hydraulic fracturing at the core of the raised reservoir levee with low degree of compaction possibly occurs due to the drastical increase of pore water pressure by water level raising. Additionally, the continuous infiltration may induce crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. Therefore, reasonable construction management for the compaction of the raised reservoir levee is needed.