• Title/Summary/Keyword: compacted materials

Search Result 182, Processing Time 0.021 seconds

Quantification of void shape in cemented materials

  • Onal, Okan;Ozden, Gurkan;Felekoglu, Burak
    • Computers and Concrete
    • /
    • v.7 no.6
    • /
    • pp.511-522
    • /
    • 2010
  • A color based segmentation procedure and a modified signature technique have been applied to the detection and analyses of complicated void shapes in cemented materials. The gray-scale segmentation and available signature methods were found to be inefficient especially for the analyses of complicated void shapes. The applicability of the developed methodology has been demonstrated on artificially prepared cemented materials made of self compacted concrete material. In order to characterize the void shapes in the investigated sample images, two new shape parameters called as coefficients of inclusion and exclusion have been proposed. When compared with the traditional use of the signature method, it was found that the methodology followed herein would better characterize complicated void shapes. The methodology followed in this study may be applied to the analysis of complicated void shapes that are often encountered in other cementitious materials such as clays and rocks.

Numerical Simulation on Seepage and Seismic Behaviors of Poorly-Compacted Raised Reservoir Levee (다짐시공이 불량한 증고 저수지 제체의 침투 및 동적거동 해석)

  • Lee, Chung-Won;Park, Sung-Yong;Oh, Hyeon-Mun;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.85-99
    • /
    • 2015
  • It is urgent to redevelop the superannuated reservoir levee through the levee raising for countermeasure to climate change and improvement of storage capacity of reservoir. However, low compaction degree of the raised reservoir levee owing to poor construction condition leads to degradation of the stability of the reservoir levee on seepage and earthquake. In this study, seepage and seismic behavior of raised reservoir levee with low compaction degree was evaluated through numerical simulation. From the simulated results, water level raising possibly induces crack and/or sinkhole on the surface of the poorly-compacted raised reservoir levee owing to the increase of the subsidences at the crown and the front side of that. In addition, relatively larger displacement and acceleration response at the front side of raised reservoir levee in seismic condition may degrade overall stability of reservoir levee. Therefore, reasonable construction management for the compaction of the raised reservoir levee is required for ensuring long-term stability on seepage and earthquake.

Durability Characteristics of Controlled Low Strength Material(Flowable Fill) with High Volume Fly Ash Content (다량의 플라이 애쉬를 사용한 저강도 고유동 충전재의 내구특성에 관한 연구)

  • 원종필;신유길
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.113-125
    • /
    • 2000
  • The purpose of this study was to examine the durability characteristics of controlled low strength material(flowable fill) with high volume fly ash content. Flowable fill refer to self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. The two primary advantages of flowable fill over traditional methods are its ease of placement and the elimination of settlement. Therefore, in difficult compaction areas or areas where settlement is a concern, flowable fill should be considered. The fly ash used in this study met the requirements of KS L 5405 and ASTM C 618 for Class F material. The mix proportions used for flowable fill are selected to obtain low-strength materials in the 10 to 15kgf/$\textrm{cm}^2$ range. The optimized flowable fill was consisted of 60kg f/$\textrm{m}^3$ cement content, 280kgf/$\textrm{m}^3$ fly ash content, 1400kgf/$\textrm{m}^3$ sand content, and 320kgf/$\textrm{m}^3$ water content. Subsequently, durability tests including permeability, warm water immersion, repeated wetting & drying, freezing & thawing for high volume fly ash-flowable fill are conducted. The results indicated that flowable fill has acceptable durability characteristics.

Effects of Some Construction Variables on the Hydraulic Conductivity of Soil-Cement in Low Permeable Applications (시공조건이 시멘트계 고화토의 투수계수에 미치는 영향)

  • 정문경;김강석;우제윤
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.427-434
    • /
    • 2000
  • Hydraulic conductivity of soil-cement was measured as a function of some selected construction variables that are often encountered in practice. They are initial (or compaction) water content, delayed compaction after mixing, and repeated freezing and thawing. Sandy and clayey soils were used. The hardening agent used was a cement based soil stabilizer consisting of 80% of ordinary Portland cement and 20% of a combination of supplementary materials. Hydraulic conductivity of soil-cement with varying initial water content was, in trend, similar to that of compacted clay. Hydraulic conductivity of soil-cement decreased with increasing initial water content and reached its minimum when compacted wet of optimum water content. Pore size distributions of soil cement at different initial water contents were analyzed using mercury intrusion porosimetry. The analysis showed that dryer condition led to the formation of larger pores with lesser total pore volume; smaller pores with larger total pore volume at wetter condition. Hydraulic conductivity of soil-cement increased by orders in magnitude when specimen underwent delayed compaction of longer than 4 hours after mixing and repeated freezing and thawing.

  • PDF

Fabrication of a Micro Die by LIGA Process and Hybrid Powder Extrusion Process of Micro-spur Gear (LIGA 공정을 이용한 초소형 스퍼기어 금형 제작 및 하이브리드 분말 압출성형)

  • Lee, K.H.;Hwang, D.W.;Kim, J.H.;Jang, S.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.19 no.6
    • /
    • pp.352-356
    • /
    • 2010
  • This paper was designed to fabricate the micro-spur gear by the LIGA and hybrid powder extrusion process. It is important to manufacture a micro-die with a high aspect ratio and determine appropriate extrusion conditions for a microforming. Ni has been used to fabricate micro-dies. LIGA process was capable to produce micro-extrusion dies with close tolerance, longer bearing length and adequate surface quality. Superplastic Al-78Zn powders have the great advantage in achieving deformation under low stresses and exhibiting good micro-formability with average strain rate raging from $10^{-3}$ to $10^{-2} s^{-1}$ and constant temperature ranging from 503 to 563K. Al-78Zn powders were compacted into a cylindrical shape ($\Phi3\times$h10mm) under compressive force of 10kN and, subsequently, the compacted powders were extruded by the hybrid powder extrusion process controlling of the temperature holing time for a improvement on formability of Al-22Zn powder. Micro-extrusion has succeeded in forming micro-gear shafts.

Strength and abrasion resistance of roller compacted concrete incorporating GGBS and two types of coarse aggregates

  • Saluja, Sorabh;Goyal, Shweta;Bhattacharjee, Bishwajit
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.127-137
    • /
    • 2019
  • Roller Compacted Concrete (RCC) is a zero slump concrete consisting of a mixture of cementitious materials, sand, dense graded aggregates and water. In this study, an attempt has been made to investigate the effect of aggregate type on strength and abrasion resistance of RCC made by using granulated blast furnace slag (GGBS) as partial replacement of cement. Mix proportions of RCC were finalized based upon the optimum water content achieved in compaction test. Two different series of RCC mixes were prepared with two different aggregates: crushed gravel and limestone aggregates. In both series, cement was partially replaced with GGBS at a replacement level of 20%, 40% and 60%. Strength Properties and abrasion resistance of the resultant mixes was investigated. Abrasion resistance becomes an essential parameter for understanding the acceptability of RCC for rigid pavements. Experimental results show that limestone aggregates, with optimum percentage of GGBS, perform better in compressive strength and abrasion resistance as compared to the use of crushed gravel aggregates. Observed results are further supported by stoichiometric analysis of the mixes by using basic stoichiometric equations for hydration of major cement compounds.

Preparation of Bi-materials by Powder Metallurgy Method (분말야금법을 이용한 Bi-materials의 제조)

  • Lee In-Gyu;Lee Kwang-Sik;Chang Si-Young
    • Journal of Powder Materials
    • /
    • v.11 no.6 s.47
    • /
    • pp.462-466
    • /
    • 2004
  • The bi-materials composed of $Al-5wt{\%}Mg$ and its composite reinforced with SiC particles were prepared by ball-milling and subsequent sintering process. The size of powder in Al-Mg/SiCp mixture decreased with increasing ball-milling time, it was saturated above 30 h when the ball and powder was in the ratio of 30 to 1. Both $Al-5wt{\%}Mg$ powders mixture and $Al-5wt{\%}Mg/SiCp$ mixture were compacted under a pressure of 350MPa and were bonded by sintering at temperatures ranging from 873K to 1173K for 1-5h. At 873k, the sound bi-mate-rials could not be obtained. In contrast, the bi-materials with the macroscopically well-bonded interface were obtained at higher temperatures than 873K. The length of well-bonded interface became longer with increasing temperature and time, indicating the improved contact in the interface between unreinforced Al-Mg part and Al-Mg/SiCp composite part. The relative density in the bi-materials increased as the sintering temperature and time increased, and the bi-materials sintered at 1173K for 5h showed the highest density.

Magnetic Properties of Powdered Fe Cores Containing Stainless Steel-making Dusts (스테인레스 제강분진을 함유한 순철 압분코아의 자기특성)

  • Kim S. W.
    • Korean Journal of Materials Research
    • /
    • v.15 no.2
    • /
    • pp.106-111
    • /
    • 2005
  • Effects of stainless steel-making dusts and binder content on compacting $density(\rho)$ and magnetic properties were evaluated. Cores compacted with the mixture of pure Fe powders, $5wt.\%$ dusts and $0.25wt.\%$ binder showed good AC magnetic properties. For example, permeability$({\mu}a)$ and core loss(P) of the cores containing $5wt.\%$ dusts at 500 kHz were 62 and $4008\;{\mu}W/cm^3$, respectively. These properties are almost equivalent to those of competitor's products (i.e, Ancorsteel TC 80 produced by $H\ddot{o}gan\ddot{a}s$ Corp.). The powdered cores obtained from the present work are expected to apply for high-performance soft magnetic components such as normal mode choke filter and pulse transformer.

Application simulations as numerical laboratory for large diameter rockfill materials (대입경 락필재료에 대한 수치시험실 활용해석)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

Tungsten-Titanium Powder Compaction by Impulsive Loading (I) (W-Ti 분말 압축 (I))

  • Dal Sun Kim;S.Nemat-Nasser
    • Explosives and Blasting
    • /
    • v.19 no.1
    • /
    • pp.101-110
    • /
    • 2001
  • Depleted uranium (DU) outperforms tungsten heavy alloys (WHA) by about 10%. Because of environmental and hence, political concerns, there is a need to improve WHA performance, in order to replace the DU penetrators. A technique of metal powder compaction by the detonation of an explosive has been applied to tungsten-titanium(W-Ti) powder materials that otherwise may be difficult to fabricate conventionally or have dissimilar, nonequilibrium, or unique me1astab1e substructures. However, the engineering properties of compacted materials are not widely reported and are little known especially for the "unique" composition of W-Ti alloy. To develop high-performance tungsten composites with superior ballistic attributes, it is necessary to understand, carefully document controlled experimental results, and develop basic computational models for potential composites with controlled microstructures. A detailed understanding and engineering application of W-Ti alloy can lead to the development of new structural design for engineering components and materials.

  • PDF