• Title/Summary/Keyword: compacted materials

Search Result 182, Processing Time 0.022 seconds

Fabrication and Mechanical Properties of STS316L Porous Metal for Vacuum Injection Mold (진공사출금형용 STS316L 금속 다공체 제조 및 기계적 특성)

  • Kim, Se Hoon;Kim, Sang Min;Noh, Sang Ho;Kim, Jin Pyeong;Shin, Jae Hyuck;Sung, Si-Young;Jin, Jin Kwang;Kim, Taean
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.197-202
    • /
    • 2015
  • In this study, porous stainless steel (STS316L) sintered body was fabricated by powder metallurgy method and its properties such as porosity, compressive yield strength, hardness, and permeability were evaluated. 67.5Fe-17Cr- 13Ni-2.5Mo (wt%) powder was produced by a water atomization. The atomized powder was classified into size with under $45{\mu}m$ and over $180{\mu}m$, and then they were compacted with various pressures and sintered at $1210^{\circ}C$ for 1 h in a vacuum atmosphere. The porosities of sintered bodies could be obtained in range of 20~53% by controlling the compaction pressure. Compressive yield strength and hardness were achieved up to 268 MPa and 94 Shore D, respectively. Air permeability was obtained up to $79l/min{\cdot}cm^2$. As a result, mechanical properties and air permeability of the optimized porous body having a porosity of 25~40% were very superior to that of Al alloy.

Pressureless Sintering and Microstructure of Pure Tungsten Powders Prepared by Ultrasonic Spray Pyrolysis (초음파 분무 열분해법으로 제조한 텅스텐 분말의 상압소결과 미세조직)

  • Heo, Youn Ji;Lee, Eui Seon;Oh, Sung-Tag;Byun, Jongmin
    • Journal of Powder Materials
    • /
    • v.29 no.3
    • /
    • pp.247-251
    • /
    • 2022
  • This study demonstrates the effect of the compaction pressure on the microstructure and properties of pressureless-sintered W bodies. W powders are synthesized by ultrasonic spray pyrolysis and hydrogen reduction using ammonium metatungstate hydrate as a precursor. Microstructural investigation reveals that a spherical powder in the form of agglomerated nanosized W particles is successfully synthesized. The W powder synthesized by ultrasonic spray pyrolysis exhibits a relative density of approximately 94% regardless of the compaction pressure, whereas the commercial powder exhibits a relative density of 64% under the same sintering conditions. This change in the relative density of the sintered compact can be explained by the difference in the sizes of the raw powder and the densities of the compacted green body. The grain size increases as the compaction pressure increases, and the sintered compact uniaxially pressed to 50 MPa and then isostatically pressed to 300 MPa exhibits a size of 0.71 m. The Vickers hardness of the sintered W exhibits a high value of 4.7 GPa, mainly due to grain refinement.

Evaluation of Dynamic Properties of Subballast Materials Used in Korea Using Midsize Resonant Column Test Apparatus (중형 공진주 시험기를 이용한 보조도상 재료의 동적특성 정량화)

  • Lim, Yu-Jin;Sin, Joong-Hoon;Park, Kyung-Su;Park, Jae-Hak;Hwang, Jung-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1214-1221
    • /
    • 2011
  • It is an well-known fact that dynamic properties should be considered in design and maintenance of civil structures undergoing dynamic force such as rail track. For designing of the rail tack structures, dynamic properties of track bed soil such as shear modulus (G) and damping coefficients(D) obtained in small to medium range of shear strain must be known. In general, small size sample of D=5 cm and H=10cm has been used mostly for test convenience. However, ratio of largest particle diameter of the soil to sample diameter is very important and affects to the values of dynamic soil properties in track bed. In this study, an RC/TS test apparatus was built and was run for testing a medium size soil sample that can handle with compacted soil sample up to 10 cm diameter and 20 cm height.

  • PDF

Mullitization of Aluminium Silicate Gel (Aluminium Silicate Gel의 Mullite화)

  • 이광식;이형복;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.5
    • /
    • pp.625-630
    • /
    • 1989
  • Aluminium silicate gels were prepared by gel-technique using Al(OH)3 and TEOS as starting materials. Aluminium silicate gel as formed mullite at 120$0^{\circ}C$. From this method, homogeneous mullite was formed available needle-like shaped and close compacted. As excess SiO2 mullite composition, the needle-like shaped crystal, size according to increased with SiO2, was increased from 3${\mu}{\textrm}{m}$ to 7${\mu}{\textrm}{m}$ but liquid phase did not affect the formation of needle-like shaped mullite. As excess Al2O3 mullite composition, the needle-shape mullite crystal could not be detected because Al2O3 acted as chunky behavior.

  • PDF

Fabrication and Dynamic Consolidation Behaviors of Rapidly Solidified Mg Alloy Powders (급속응고 Mg 합금분말의 제조 및 동적성형특성)

  • Chae, Hong-Jun;Kim, Young-Do;Kim, Taek-Soo
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.340-346
    • /
    • 2011
  • In order to improve the weak mechanical properties of cast Mg alloys, Mg-$Zn_1Y_2$ (at%) alloy powders were synthesized using gas atomization, a typical rapid solidification process. The powders consist of fine dendrite structures less than 3 ${\mu}m$ in arm spacing. In order to fabricate a bulk form, the Mg powders were compacted using magnetic pulse compaction (MPC) under various processing parameters of pressure and temperature. The effects of the processing parameters on the microstructure and mechanical properties were systematically investigated.

Densification Behavior of Dissimilar Material Powder during Die Compaction (금형압축 하에서 구리/철 이종재료 분말의 치밀화 거동)

  • Kim, Taek-Eui;Lee, Sung-Chul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.379-386
    • /
    • 2008
  • Densification behavior of dissimilar material powder (copper and pure iron powder) under die compaction was investigated. Experimental data were obtained for copper and pure iron powder compacts with various volume ratios under die compaction. Dissimilar material powder was simultaneously compacted into a jointed cylindrical compact with different powder materials in inner and outer part, respectively. To simulate densification behavior of dissimilar material powder, elastoplastic constitutive equation proposed by Shima and Oyane was implemented into a finite element program (ABAQUS) under die compaction. Finite element results were compared with experimental data for densification, deformed geometry and density distribution of powder compacts under die compaction.

The Influence of Powder Compaction Pressure on Density and Dimension of a Powder Metallurgy Product (분말야금 공정 중 분말 성형압력이 밀도와 치수에 미치는 영향)

  • Cho, J.H.;Kwon, Y.S.;Chung, S.T.;Lee, M.C.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.244-249
    • /
    • 2007
  • The influence of powder compaction pressure on the hydraulic cylinder block fabricated by powder metallurgy is investigated in this study. The cylinder block is compacted with powder under various compaction pressures and then sintered, and its density and dimensions are measured to reveal the relationship of the powder compaction pressure with the product quality. Moreover, finite element analyses of the density distributions are carried out under the same conditions with the experiments and the predicted results are compared with the measured ones.

Analysis on the Site Characteristics for the Restoration of Sangrim Woodlands in Hamyang-Gun, Korea (함양 상림 복원을 위한 입지특성 분석)

  • Park, Jae-Hyeon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • This study was conducted to establish a management plan for the Sangrim Woodlands restoration by analyzing the site characteristics of the Sangrim Woodlands Natural Monument(Natural Monument 154) in Hamyang-Gun, Gyoungsangnam-Do, Korea. Site preparation to enhance soil aeration should be applied because soil bulk density in all study sites was higher than soil compaction of natural forest soil area. Herbaceous plants could be introduced to hard soil strength for restoration of areas compacted by visitors. Also, visitors around forest areas should be restricted to enhance natural soil restoration. Soil pH in the Sangrim Woodlands was between 4.18 and 4.90. The values were lower than pH 5.34 of Korean forest soil originated from metamorphic parent materials. Lime fertilizer could be applied to reduce soil acidification in the woodlands. Short and long-term management plans such as periodical fertilizations to improve plant growth should be established to restore the Sangrim Woodlands which have high soil compaction, low soil pH and organic matter content.

Evaluation of Mechanical Properties of Highly Porous Titanium Considering its Application as a Biomaterial

  • Schiefer, Herwig;Bram, Martin;Buchkremer, Hans Peter;Stover, Detlev
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.309-310
    • /
    • 2006
  • Porous titanium implants can be produced by powder metallurgy in combination with suitable space holder materials. Various mechanical experiments were done to characterize this material regarding the influence of the processing parameters on microstructure and mechanical properties taking into account the properties of the human bone. In this paper, the anistropic behaviour of uniaxially compacted samples was analysed in compression tests and compared to the behaviour of isostatically pressed samples. The failure of the struts of the porous titanium and the crack- initiation and -growth was examined by in-situ SEM analysis.

  • PDF

Fabrication of Porous Material Using Glass Abrasive Sludge

  • Chu, Yong-Sik;Kwon, Chun-Woo;Lee, Jong-Kyu;Shim, Kwang-Bo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.606-607
    • /
    • 2006
  • A porous material with a surface layer was fabricated using glass abrasive sludge and expanding agents. The glass abrasive sludges were mixed with expanding agents and compacted into pellets. These pellets were sintered in the range of $700-900^{\circ}C$ for 20min. The sintered porous materials had a surface layer with smaller pores and inner parts with larger pores. The surface layer and pores controlled the absorption ratio and physical properties.

  • PDF