• Title/Summary/Keyword: compact size

Search Result 972, Processing Time 0.029 seconds

The Design of Interleaved Bi-directional DC-DC Converter for Fuel Cell and Battery Hybrid System (연료전지·이차전지 하이브리드 시스템을 위한 인터리빙 양방향 DC-DC 컨버터 설계)

  • Kim, Seung-Min;Choi, Ju-Yeop;Choy, Ick;Song, Seung-Ho;Lee, Sang-Cheol;Lee, Dong-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-53
    • /
    • 2013
  • Fuel cell power system is one of the most promising energy source for the alternative energy because it has unique advantages such as high energy density, no power drop during operation, and feasible to make compact size. However, due to very low response time, fuel cell is difficult to correspond to drastic load changes and start-up operation. For solving these problem, fuel cell power system must include energy storage device such as Li-Poly battery or super capacitor. Therefore, bi-directional DC-DC converter must be required for this storage device and fuel cell-PCS control. This paper presents a design and modeling of the bi-directional DC/DC converter. Firstly, we present modeling the boost and buck mode of the bi-directional converter through both PWM switch model and state space averaging technique. Secondly, in order to minimize output ripple and transient response overshoot, we have two identical DC-DC converters interleaved and adopt two-loop voltage-current controller. The proposed bi-directional DC-DC converter's modeling method and control design have been verified with computer simulation and experimentation.

Multi-wavelength Study of Blazars Using Variability as a Tool

  • Baliyan, Kiran S.;Kaur, Navpreet;Chandra, Sunil;Sameer, Sameer;Ganesh, Shashikiran
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2016
  • Active galactic nuclei (AGN) are too compact to be resolved by any existing optical telescope facility, making it difficult to understand their structure and the emission processes responsible for their huge energy output. However, variability, one of their characteristic properties, provides a tool to probe the inner regions of AGN. Blazars are the best candidates for such a study, and hence a considerable amount of effort is being made to investigate variability in these sources across the electromagnetic spectrum. Here, using the Mt. Abu infrared observatory (MIRO) blazar monitoring program, we present intra-night, inter-night, and long term aspects of the variability in S5 0716+71, 3C66A, and OJ 287. These stars show significant variability on short (a few tens of mins, to a few hours, to a few days) to long term (months to years) timescales. Based on the light travel time argument, the shortest variability timescales (micro-variability) provide upper limits to the size of the emission region. While S5 0716 shows a very high duty cycle of variability (> 80 %), 3C66A shows a much lower intra day variability (IDV) duty cycle (< 20 %). All three show rapid variations within 2.5 to 3.5 hr, which, perhaps, are generated near the vicinity of black holes. Assuming this, estimates of the masses of the black holes are made at ~109, 8×108, and 2.7×109 M for S5 0716+71, 3C66A, and OJ 287, respectively. Multi-wavelength light-curves for the blazar PKS 1510-089 are discussed to infer the emission processes responsible for the recent flaring episodes in this source.

Design and Fabrication of a Polarization-Independent 1 ${\times}$ 8 InGaAsP/InP MMI Optical Splitter (편광에 무관한 1 ${\times}$ 8 InGaAsP/InP 다중모드간섭 광분배기의 설계 및 제작)

  • Yu, Jae-Su;Moon, Jeong-Yi;Bae, Seong-Ju;Lee, Yong-Tak
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.28-29
    • /
    • 2000
  • Optical power splitters and/or couplers are important components for optical signal distribution between channels both in wavelength division multiplexing(WDM) systems and photonic integrated circuits(PICs). Since polarization is usually not known after propagation in an optical fiber, passive WDM components have to be polarization insensitivity, Compared to alternatives such as directional couplers or Y-junction splitters, splitters based on multimode interference(MMI) have found a growing interest in recent yens because of their desirable characteristics, such as compact size, low excess loss, wide bandwidth, polarization independence, and relaxed fabrication tolerances$^{(1)}$ . These devices have been fabricated in polymers, silica, or III-V semiconductor materials. A1 $\times$ 4 MMI power splitter on InP materials that were suitable for application in the 1.55-${\mu}{\textrm}{m}$ region$^{(2)}$ . However, the fabrication process of the structure is too complicated and the photolithography tolerance is very tight. Also, a 1 $\times$ 16 InGaAsP/InP MMI power splitter with an excess loss of 2.2dB and a splitting ratio of 1.5dB was demonstrated by using deep etching$^{(3)}$ . The deep etching of the sidewalls through the entire guide layer of the slab waveguide resulted in a number of drawbacks$^{(4)}$ . (omitted)

  • PDF

A Study on Synthetic Method and Material Analysis of Calcium Ammine Chloride as Ammonia Transport Materials for Solid SCR (Solid SCR용 암모니아 저장물질인 Calcium Ammine Chloride의 합성방법 및 물질분석 연구)

  • Shin, Jong Kook;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.2
    • /
    • pp.199-207
    • /
    • 2015
  • Solid materials of ammonia sources with SCR have been considered for the application of lean NOx reduction in automobile industry, to overcome complex problems of liquid urea based SCR. These solid materials produce ammonia gas directly with proper heating and can be packaged by compact size, because of high volumetric ammonia density. Among ammonium salts and metal ammine chlorides, calcium ammine chloride was focused on this paper due to low decomposition temperature. In order to make calcium ammine chloride in lab-scale, simple reactor and glove box was designed and built with ammonium gas tank, regulator, and sensors. Basic test conditions of charging ammonia gas to anhydrous calcium chloride are chosen from equilibrium vapor pressure by Van't Hoff plot based on thermodynamic properties of materials. Synthetic method of calcium ammine chloride were studied for different durations, temperatures, and pressures with proper ammonia gas charged, as a respect of ammonia gas adsorption rate(%) from simple weight calculations which were confirmed by IC. Also, lab-made calcium ammine chloride were analyzed by TGA and DSC to clarify decomposition step in the equations of chemical reaction. To understand material characteristics for lab-made calcium ammine chloride, DA, XRD and FT-IR analysis were performed with published data of literature. From analytical results, water content in lab-made calcium ammine chloride can be discovered and new test procedures of water removal were proposed.

Planar Square-spiral Antenna using a strip conductor (도체스트립을 이용한 평판사각 스파이럴 안테나)

  • Yang, Doo-Yeong;Lee, Min-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2325-2331
    • /
    • 2012
  • Planar square-spiral antenna using a strip conductor is proposed and analyzed for RFID system in UHF band operating from 860MHz to 960MHz. By varying the length of common line, detached distance, strip line-space, strip line-width and the number of spiral turn, the optimized antenna are designed and fabricated in compact size without a matching-stub between the input port of the proposed antenna and RFID tag chip. From the optimized results, the frequency bandwidth in VSWR<2 has covered 100MHz in the RFID UHF band. The antenna gain has obtained 3.5dBi at the center frequency of 910MHz and the desired beam pattern has shown directional pattern on elevation and azimuth angle. Therefore, the proposed antenna is suitable for practical RFID applications requiring various tag chips with the specific input impedance.

FPGA based HW/SW co-design for vision based real-time position measurement of an UAV

  • Kim, Young Sik;Kim, Jeong Ho;Han, Dong In;Lee, Mi Hyun;Park, Ji Hoon;Lee, Dae Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2016
  • Recently, in order to increase the efficiency and mission success rate of UAVs (Unmanned Aerial Vehicles), the necessity for formation flights is increased. In general, GPS (Global Positioning System) is used to obtain the relative position of leader with respect to follower in formation flight. However, it can't be utilized in environment where GPS jamming may occur or communication is impossible. Therefore, in this study, monocular vision is used for measuring relative position. General PC-based vision processing systems has larger size than embedded systems and is hard to install on small vehicles. Thus FPGA-based processing board is used to make our system small and compact. The processing system is divided into two blocks, PL(Programmable Logic) and PS(Processing system). PL is consisted of many parallel logic arrays and it can handle large amount of data fast, and it is designed in hardware-wise. PS is consisted of conventional processing unit like ARM processor in hardware-wise and sequential processing algorithm is installed on it. Consequentially HW/SW co-designed FPGA system is used for processing input images and measuring a relative 3D position of the leader, and this system showed RMSE accuracy of 0.42 cm ~ 0.51 cm.

Three Dimensional Finite Element Analysis on ITI Implant Supported Fixed Partial Dentures with Various Fitting Accuracy (적합도에 따른 ITI 임플란트 지지 고정성 국소의치의 삼차원 유한요소 분석)

  • Choi, Min-Ho;Lee, Il-Kwon;Kim, Yu-Ree;Cho, Hye-Won
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.1
    • /
    • pp.75-87
    • /
    • 2006
  • The purpose of this study was to investigate the effects of prostheses misfit, cantilever on the stress distribution in the implant components and surrounding bone using three dimensional finite element analysis. Two standard 3-dimensional finite element models were constructed: (1) 3 ITI implant supported, 3-unit fixed partial denture and (2) 3 ITI implant supported, 3-unit fixed partial denture with a distal cantilever. variations of the standard finite element models were made by placing a $100{\mu}m$ or $200{\mu}m$ gap between the fixture, the abutment and the crown on the second premolar and first molar. Total 14 models were constructed. In each model, 244 N of vertical load and 244 N of $30^{\circ}$ oblique load were placed on the distal marginal ridge of the distal molar. von Mises stresses were recorded and compared in the crowns, abutments, crestal compact bones, and trabecular bones. The results were obtained as follows: 1. In the ITI implant system, cement-retained prostheses showed comparatively low stress distributions on all the implant components and fixtures regardless of the misfit sizes under vertical loading. The stresses were increased twice under oblique loading especially in the prostheses with cantilever, but neither showed the effects of misfit size. 2. Under the oblique loading and posterior cantilever, the stresses were highly increased in the crestal bones around ITI implants, but effects of misfit were not shown. Although higher stresses were shown on the apical portion of trabecular bones, the effects by misfit were little and the stresses were increased by the posterior cantilever. 3. When the cement loss happened in the ITI implant supported FPD with misfit, the stresses were increased in the implant componets and supporting structures.

Suppression of Harmonic Passband of Bandpass Filters(BPFs) Using Parallel-Coupled Mushroom Structure (평행 결합 Mushroom 구조를 이용한 대역 통과 여파기의 고조파 성분 억제)

  • Lee, Jae-Gon;Lee, Jeong-Hae
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.118-125
    • /
    • 2007
  • Harmonic band of bandpass filter(BPF) is suppressed using coupled mushroom structure. Between double positive (DPS) transmission line such as microstrip and double negative(DNG) transmission line such as one dimensional mushroom structure, strong coupling broadly arises in the cross range of dispersion curves of isolated microstrip and mushroom structure because of complex propagation constant in the cross range. Strong coupling inhibits wave propagation, so that this kind of structure can be utilized as bandstop filter(BSF). This BSF utilizes coupled transmission line instead of coupled resonator, resulting in broad bandwidth(>30 %), shan-rejection, and high rejection level. The strong coupling between DPS and DNG transmissionline makes it possible shorten coupling length, resulting in compact size. In this paper, parallel coupled BSF having center frequency of 4 GHz and 3 dB fractional bandwidth of 40 % is designed and utilized to suppressed spurious mode of two bandpass filters.

Sizes and Structures of Micelles of Cationic Octadecyl Trimethyl Ammonium Chloride and Anionic Ammonium Dodecyl Sulfate Surfactants in Aqueous Solutions

  • Kim, Hong-Un;Lim, Kyung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.382-388
    • /
    • 2004
  • The sizes and structures of micelles formed in aqueous solutions of cationic octadecyl trimethyl ammonium chloride (OTAC) and anionic ammonium dodecyl sulfate (ADS) surfactants were investigated using smallangle neutron scattering (SANS), self-diffusion coefficients by pulsed-gradient spin-echo (PGSE) NMR, and dynamic light scattering (DLS) methods. SANS and DLS data indicate that their structures are spherical at concentrations as high as 300 mM. As the total surfactant concentration increases, the peaks of SANS spectra shift to higher scattering vector and become sharper, indicating that the intermicellar distance decreases and its distribution becomes narrower. This is due to more compact packing of surfactant molecules at high concentrations. The intermicellar distance of around 100 ${\AA}$ above 200 mM corresponds approximately to the diameter of one micelle. The sizes of spherical micelles are 61 ${\AA}$ and 41 ${\AA}$ for 9 mM OTAC and 10 mM ADS, respectively. Also the self-diffusion coefficients by PGSE-NMR yield the apparent sizes 96 ${\AA}$ and 31 ${\AA}$ for micelles of 1 mM OTAC and 10 mM ADS, respectively. For ADS solutions of high concentrations (100-300 mM), DLS data show that the micelle size remains constant at $25{\pm}2{\AA}$. This indicates that the transition in micellar shape does not take place up to 300 mM, which is consistent with the SANS results.

Design of LED Bicycle Headlamp with a Horizontally Wide Viewing Angle

  • Park, Hyun Jung;Lee, Dong Kyu;Lee, Jae Min;Park, Kwang-Woo;Joo, Jae Young;Kwak, Joon Seop
    • Current Optics and Photonics
    • /
    • v.1 no.4
    • /
    • pp.351-357
    • /
    • 2017
  • This paper proposes a LED bicycle headlamp with a wide viewing angle to help bicyclists see the front effectively and because of its high visibility to reduce the risks of accidents around intersections or blind spots. The wide viewing angle was determined to be $28^{\circ}$ because it can illuminate a 5 m wide area 10 m away. Therefore, the road conditions of the intersection can be observed with the bicycle handlebar tilted slightly to the left or right. The headlamp has a compact reflector with a width of 30 mm, height of 27 mm, and length of 17 mm. Owing to its size, a change in the position of a light source leads to severe changes in light distribution. Therefore, the tolerance of the source position was analyzed by a simulation. The tolerance was ${\pm}0.5mm$ at the X, Y and Z axes within a less centered aiming range of ${\pm}1^{\circ}$. Finally, the prototype of the bicycle headlamp was made and the light distribution was measured by an automotive headlamp light measurement system. The experimental results indicate that the headlamp illuminates a 5 m wide area with an edge light of 3.2 lx as well as meeting the K-mark regulation.