• Title/Summary/Keyword: compact model

Search Result 517, Processing Time 0.034 seconds

Single Image Super-resolution using Recursive Residual Architecture Via Dense Skip Connections (고밀도 스킵 연결을 통한 재귀 잔차 구조를 이용한 단일 이미지 초해상도 기법)

  • Chen, Jian;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.633-642
    • /
    • 2019
  • Recently, the convolution neural network (CNN) model at a single image super-resolution (SISR) have been very successful. The residual learning method can improve training stability and network performance in CNN. In this paper, we propose a SISR using recursive residual network architecture by introducing dense skip connections for learning nonlinear mapping from low-resolution input image to high-resolution target image. The proposed SISR method adopts a method of the recursive residual learning to mitigate the difficulty of the deep network training and remove unnecessary modules for easier to optimize in CNN layers because of the concise and compact recursive network via dense skip connection method. The proposed method not only alleviates the vanishing-gradient problem of a very deep network, but also get the outstanding performance with low complexity of neural network, which allows the neural network to perform training, thereby exhibiting improved performance of SISR method.

GCP Chip Automatic Extraction of Satellite Imagery Using Interest Point in North Korea (특징점 추출기법을 이용한 접근불능지역의 위성영상 GCP 칩 자동추출)

  • Lee, Kye Dong;Yoon, Jong Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.4
    • /
    • pp.211-218
    • /
    • 2019
  • The Ministry of Land, Infrastructure and Transport is planning to launch CAS-500 (Compact Advanced Satellite 500) 1 and 2 in 2019 and 2020. Satellite image information collected through CAS-500 can be used in various fields such as global environmental monitoring, topographic map production, analysis for disaster prevention. In order to utilize in various fields like this, it is important to get the location accuracy of the satellite image. In order to establish the precise geometry of the satellite image, it is necessary to establish a precise sensor model using the GCP (Ground Control Point). In order to utilize various fields, step - by - step automation for orthoimage construction is required. To do this, a database of satellite image GCP chip should be structured systematically. Therefore, in this study, we will analyze various techniques for automatic GCP extraction for precise geometry of satellite images.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Conceptual Design and Flight Testing of a Synchropter Drone (Synchropter 드론의 개념설계 및 비행시험)

  • Chung, Injae;Moon, Jung-ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.997-1004
    • /
    • 2020
  • A synchropter is a type of rotorcraft in which a pair of blades inclined with each other rotates in synchronization. Removing the tail rotor enables an efficient and compact configuration similar to a coaxial-rotor helicopter. This paper describes the design and flight test results of a small synchropter to examine the suitability of a drone system for the army. The synchropter in this paper is a small vehicle with a rotor diameter of 1.4m and a weight of 7kg and was assembled based on commercial parts to examine flight characteristics effectively. The flight control system adopted Pixhawk, which is designed based on an open-architecture. The model-based design technique is applied to develop the control law of the synchropter and a new firmware embedded on the Pixhawk. Through qualitative flight tests, we analyzed the flight characteristics. As a result of the analysis, we confirmed the possibility of application as a drone system of the synchropter.

Atmospheric Correction of Sentinel-2 Images Using Enhanced AOD Information

  • Kim, Seoyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.83-101
    • /
    • 2022
  • Accurate atmospheric correction is essential for the analysis of land surface and environmental monitoring. Aerosol optical depth (AOD) information is particularly important in atmospheric correction because the radiation attenuation by Mie scattering makes the differences between the radiation calculated at the satellite sensor and the radiation measured at the land surface. Thus, it is necessary to use high-quality AOD data for an appropriate atmospheric correction of high-resolution satellite images. In this study, we examined the Second Simulation of a Satellite Signal in the Solar Spectrum (6S)-based atmospheric correction results for the Sentinel-2 images in South Korea using raster AOD (MODIS) and single-point AOD (AERONET). The 6S result was overall agreed with the Sentinel-2 level 2 data. Moreover, using raster AOD showed better performance than using single-point AOD. The atmospheric correction using the single-point AOD yielded some inappropriate values for forest and water pixels, where as the atmospheric correction using raster AOD produced stable and natural patterns in accordance with the land cover map. Also, the Sentinel-2 normalized difference vegetation index (NDVI) after the 6S correction had similar patterns to the up scaled drone NDVI, although Sentinel-2 NDVI had relatively low values. Also, the spatial distribution of both images seemed very similar for growing and harvest seasons. Future work will be necessary to make efforts for the gap-filling of AOD data and an accurate bi-directional reflectance distribution function (BRDF) model for high-resolution atmospheric correction. These methods can help improve the land surface monitoring using the future Compact Advanced Satellite 500 in South Korea.

Development of Variable Vacuum Capacitor with Maximum Voltage of 12 kV and Capacitance of 50 to 500 pF (최대 전압 12 kV, 커패시턴스 50~500 pF 가변 진공커패시터 개발)

  • Cha, Youngkwang;Lee, Ilhoi;Jeon, Kibeom;Jang, Jihoon;Ju, Heungjin;Choi, aSeungkil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.3
    • /
    • pp.232-240
    • /
    • 2022
  • A variable vacuum capacitor (VVC), which is a variable element, is used to match impedance in plasma that changes with various impedance values, and its use is expanding with the rapid growth of the semiconductor business. Since VVCs have to secure insulation performance and vary capacitance within a compact size, electrode design and manufacturing are very important; thus, various technologies such as part design and manufacturing technology and vacuum brazing technology are required. In this study, based on the model of an advanced foreign company that is widely used for impedance matching in the manufacture of semiconductors and displays, a VVC that can realize the same performance was developed. The electrode part was designed, the consistency was confirmed through analysis, and the precision of capacitance was improved by designing a cup-type electrode to secure the concentricity of the electrode. As a result of the evaluation, all requirements was satisfied. We believe that self-development will be possible if satisfactory responses are received through evaluation by VVC consumers in the future.

Evaluation of schistosomula lung antigen preparation and soluble egg antigen vaccines on experimental schistosomiasis mansoni

  • Nagwa S. M. Aly;Hye-Sook Kim;Maysa A. Eraky;Asmaa A. El Kholy;Basma T. Ali;Shin-ichi Miyoshi;Rabab E. Omar
    • Parasites, Hosts and Diseases
    • /
    • v.61 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • Schistosomiasis causes significant morbidity and mortality worldwide. This study aimed to assess the effect of schistosomula lung antigen preparation (SLAP) and soluble egg antigen (SEA) on a murine schistosomiasis mansoni model. Ninety laboratory-bred male Swiss albino mice were divided into 6 groups. Two doses of the vaccine were given at 2-week intervals. All mice were subcutaneously infected with 80±10 Schistosoma mansoni cercariae 2 weeks after the last vaccination dose. They were sacrificed 7 weeks post-infection. Parasitological and histopathological studies were conducted to assess the effect of inoculated antigens (single or combined). The results showed that the combination of SLAP and SEA (combination group) led to a significant reduction in worm burden (65.56%), and liver and intestine egg count (59% and 60.59%, respectively). The oogram pattern revealed a reduction in immature and mature eggs (15±0.4 and 10±0.8, respectively) and an increased number of dead eggs in the combination group (P<0.001). In terms of histopathological changes, the combination group showed notably small compact fibrocellular egg granuloma and moderate fibrosis in the liver. A high percentage of destroyed ova was observed in the intestine of the combination group. This study demonstrates for the first time the prophylactic effect of combined SLAP and SEA vaccine. The vaccine induced a significant reduction in the parasitological and pathological impacts of schistosomiasis mansoni in hepatic and intestinal tissues, making it a promising vaccine candidate for controlling schistosomiasis.

TWO-Point Reactor Kinetics for Large D$_2$O Reflected Systems (다량의 중수반사체 계통에 대한 2-점노 운동방정식)

  • Noh, T.W.;Oh, S.K.;Kim, S.Y.;Kim, D.H.
    • Nuclear Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.192-197
    • /
    • 1987
  • Two-point kinetic equations for a compact-core-with-bulky-D$_2$O-reflector system were developed. A unique feature of the system is that certain fission gammas create retarded photoneutrons in the D$_2$O reflector by (r, n) reaction. Coupling effect between the core and the reflector was investigated by simulating power transients with various ramp reactivity insertions. Special attention was paid to the phenomenon associated with spatial separation of photoneutrons and their precursors. Simulations show that accuracy of the two-point model is comparable with that of space-dependent approach. Also it is found that the explicily expressed photoneutron terms in the reflector equation slow down the power transient compared to non-photoneutron expressions. Detectors for reactor power control purpose prefer to be deployed in the core zone to be able to accurately perdict transient power.

  • PDF

Implementation of a Simulation Tool for Monitoring Runtime Thermal Behavior (실시간 온도 감시를 위한 시뮬레이션 도구의 구현)

  • Choi, Jin-Hang;Lee, Jong-Sung;Kong, Joon-Ho;Chung, Sung-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.145-151
    • /
    • 2009
  • There are excessively hot units of a microprocessor in today's nano-scale process technology, which are called hotspots. Hotspots' heat dissipation is not perfectly conquered by mechanical cooling techniques such as heatsink, heat spreader, and fans; Hence, an architecture-level temperature simulation of microprocessors is evident experiment so that designers can make reliable chips in high temperature environments. However, conventional thermal simulators cannot be used in temperature evaluation of real machine, since they are too slow, or too coarse-grained to estimate overall system models. This paper proposes methodology of monitoring accurate runtime temperature with Hotspot[4], and introduces its implementation. With this tool, it is available to track runtime thermal behavior of a microprocessor at architecture-level. Therefore, Dynamic Thermal Management such as Dynamic Voltage and Frequency Scaling technique can be verified in the real system.

Vehicle Type Classification Model based on Deep Learning for Smart Traffic Control Systems (스마트 교통 단속 시스템을 위한 딥러닝 기반 차종 분류 모델)

  • Kim, Doyeong;Jang, Sungjin;Jang, Jongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.469-472
    • /
    • 2022
  • With the recent development of intelligent transportation systems, various technologies applying deep learning technology are being used. To crackdown on illegal vehicles and criminal vehicles driving on the road, a vehicle type classification system capable of accurately determining the type of vehicle is required. This study proposes a vehicle type classification system optimized for mobile traffic control systems using YOLO(You Only Look Once). The system uses a one-stage object detection algorithm YOLOv5 to detect vehicles into six classes: passenger cars, subcompact, compact, and midsize vans, full-size vans, trucks, motorcycles, special vehicles, and construction machinery. About 5,000 pieces of domestic vehicle image data built by the Korea Institute of Science and Technology for the development of artificial intelligence technology were used as learning data. It proposes a lane designation control system that applies a vehicle type classification algorithm capable of recognizing both front and side angles with one camera.

  • PDF