• Title/Summary/Keyword: commutative rings

Search Result 226, Processing Time 0.02 seconds

COUSIN COMPLEXES AND GENERALIZED HUGHES COMPLEXES

  • Kim, Dae-Sig;Song, Yeong-Moo
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.503-511
    • /
    • 1994
  • In this paper, the ring A will mean a commutative Noetherian ring with non-zero multiplicative identity, it is understood that the ring homomorphisms respect identity elements and M will denote an A-module. Throughout this paper A and B will denote rings, $f : A \to B$ a ring homomorphism. C(A) (resp. C(B)) presents the category of all A-modules (resp. B-modules) and A-homomorphisms (resp. B-homorphisms) between them. The following ideas will be used without further explanation. B can be regarded as an A-module by means of f and $M\otimesB$ can be regarded as a B-module in the natural way. Furthermore the restriction of scalars provides a functor from C(B) to C(A).

  • PDF

THE WEAK F-REGULARITY OF COHEN-MACAULAY LOCAL RINGS

  • Cho, Y.H.;Moon, M.I.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.175-180
    • /
    • 1991
  • In [3], [4] and [5], Hochster and Huneke introduced the notions of the tight closure of an ideal and of the weak F-regularity of a ring. This notion enabled us to give new proofs of many results in commutative algebra. A regular ring is known to be F-regular, and a Gorenstein local ring is proved to be F-regular provided that one ideal generated by a system of parameters (briefly s.o.p.) is tightly closed. In fact, a Gorenstein local ring is weakly F-regular if and only if there exists a system of parameters ideal which is tightly closed [3]. But we do not know whether this fact is true or not if a ring is not Gorenstein, in particular, a ring is a Cohen Macaulay (briefly C-M) local ring. In this paper, we will prove this in the case of an 1-dimensional C-M local ring. For this, we study the F-rationality and the normality of the ring. And we will also prove that a C-M local ring is to be Gorenstein under some additional condition about the tight closure.

  • PDF

NOTES ON SYMMETRIC SKEW n-DERIVATION IN RINGS

  • Koc, Emine;Rehman, Nadeem ur
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1113-1121
    • /
    • 2018
  • Let R be a prime ring (or semiprime ring) with center Z(R), I a nonzero ideal of R, T an automorphism of $R,S:R^n{\rightarrow}R$ be a symmetric skew n-derivation associated with the automorphism T and ${\Delta}$ is the trace of S. In this paper, we shall prove that S($x_1,{\ldots},x_n$) = 0 for all $x_1,{\ldots},x_n{\in}R$ if any one of the following holds: i) ${\Delta}(x)=0$, ii) [${\Delta}(x),T(x)]=0$ for all $x{\in}I$. Moreover, we prove that if $[{\Delta}(x),T(x)]{\in}Z(R)$ for all $x{\in}I$, then R is a commutative ring.

$\Theta$-DERIVATIONS ON PRIME RINGS

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.12 no.1_2
    • /
    • pp.313-321
    • /
    • 2003
  • In this Paper we show the following: Let R be a prime ring (with characteristic different two) and a $\in$ R. Let Θ, $\phi$ : R longrightarrow R be automorphisms and let d : R longrightarrow R be a nonzero Θ-derivation. (i) if[d($\chi$), a]Θo$\phi$ = 0 (or d([$\chi$, a]$\phi$ = 0) for all $\chi$ $\in$ R, then a+$\phi$(a) $\in$ Z, the conte. of R, (ii) if〈d($\chi$), a〉 = 0 for all $\chi$$\in$R, then d(a) =0. (iii) if [ad($\chi$), $\chi$$\phi$= 0 for all $\chi$$\in$R, then either a = 0 or R is commutative.

PF-rings of Generalized Power Series

  • Kim, Hwankoo;Kwon, Tae In
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.127-132
    • /
    • 2007
  • In this paper, we show that if R is a commutative ring with identity and (S, ${\leq}$) is a strictly totally ordered monoid, then the ring [[$R^{S,{\leq}}$]] of generalized power series is a PF-ring if and only if for any two S-indexed subsets A and B of R such that $B{\subseteq}ann_R(|A)$, there exists $c{\in}ann_R(A)$ such that $bc=b$ for all $b{\in}B$, and that for a Noetherian ring R, $[[R^{S,{\leq}}$]] is a PP ring if and only if R is a PP ring.

  • PDF

A NOTE OF PI-RINGS WITH RESTRICTED DESCENDING

  • Hong, Chan-Yong
    • The Pure and Applied Mathematics
    • /
    • v.1 no.1
    • /
    • pp.1-6
    • /
    • 1994
  • In this paper, some properties for a PI-ring satisfying the descending chain condition on essential left ideals are studied: Let R be a ring with a polynomial identity satisfying the descending chain condition on essential ideals. Then all minimal prime ideals in R are maximal ideals. Moreover, if R has only finitely many minimal prime ideals, then R is left and right Artinian. Consequently, if every primeideal of R is finitely generated as a left ideal, then R is left and right Artinian. A finitely generated PI-algebra over a commutative Noetherian ring satisfying the descending chain condition on essential left ideals is a finite module over its center.(omitted)

  • PDF

Derivations on Semiprime Rings and Banach Algebras, I

  • Kim, Byung-Do;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.165-182
    • /
    • 1994
  • The aim of this paper is to give the partial answer of Vukman's conjecture [2]. From the partial answer we also generalize a classical result of Posner. We prove the following result: Let R be a prime ring with char$(R){\neq}2,3$, and 5. Suppose there exists a nonzero derivation $D:R{\rightarrow}R$ such that the mapping $x{\longmapsto}$ [[[Dx,x],x],x] is centralizing on R. Then R is commutative. Using this result and some results of Sinclair and Johnson, we generalize Yood's noncom-mutative extension of the Singer-Wermer theorem.

  • PDF

NEGACYCLIC CODES OF LENGTH 8ps OVER Fpm + uFpm

  • Klin-eam, Chakkrid;Phuto, Jirayu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1385-1422
    • /
    • 2019
  • Let p be an odd prime. The algebraic structure of all negacyclic codes of length $8_{p^s}$ over the finite commutative chain ring ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ where $u^2=0$ is studied in this paper. Moreover, we classify all negacyclic codes of length $8_{p^s}$ over ${\mathbb{F}}_{p^m}+u{\mathbb{F}}_{p^m}$ into 5 cases, i.e., $p^m{\equiv}1$ (mod 16), $p^m{\equiv}3$, 11 (mod 16), $p^m{\equiv}5$, 13 (mod 16), $p^m{\equiv}7$, 15 (mod 16) and $p^m{\equiv}9$ (mod 16). From that, the structures of dual and some self-dual negacyclic codes and number of codewords of negacyclic codes are obtained.

THE OHM-RUSH CONTENT FUNCTION III: COMPLETION, GLOBALIZATION, AND POWER-CONTENT ALGEBRAS

  • Epstein, Neil;Shapiro, Jay
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1311-1325
    • /
    • 2021
  • One says that a ring homomorphism R → S is Ohm-Rush if extension commutes with arbitrary intersection of ideals, or equivalently if for any element f ∈ S, there is a unique smallest ideal of R whose extension to S contains f, called the content of f. For Noetherian local rings, we analyze whether the completion map is Ohm-Rush. We show that the answer is typically 'yes' in dimension one, but 'no' in higher dimension, and in any case it coincides with the content map having good algebraic properties. We then analyze the question of when the Ohm-Rush property globalizes in faithfully flat modules and algebras over a 1-dimensional Noetherian domain, culminating both in a positive result and a counterexample. Finally, we introduce a notion that we show is strictly between the Ohm-Rush property and the weak content algebra property.

ON 𝜙-EXACT SEQUENCES AND 𝜙-PROJECTIVE MODULES

  • Zhao, Wei
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1513-1528
    • /
    • 2021
  • Let R be a commutative ring with prime nilradical Nil(R) and M an R-module. Define the map 𝜙 : R → RNil(R) by ${\phi}(r)=\frac{r}{1}$ for r ∈ R and 𝜓 : M → MNil(R) by ${\psi}(x)=\frac{x}{1}$ for x ∈ M. Then 𝜓(M) is a 𝜙(R)-module. An R-module P is said to be 𝜙-projective if 𝜓(P) is projective as a 𝜙(R)-module. In this paper, 𝜙-exact sequences and 𝜙-projective R-modules are introduced and the rings over which all R-modules are 𝜙-projective are investigated.