• Title/Summary/Keyword: commutation torque ripple

Search Result 63, Processing Time 0.022 seconds

Reduction of Torque Ripple in a BLDC Motor Using an Improved Voltage Control (개선된 전압제어를 이용한 BLDC 전동기의 토크맥동저감)

  • Song, Jeong-Hyun;Jang, Jin-Seok;Kim, Byung-Taek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.145-150
    • /
    • 2010
  • This paper deals with reduction of torque ripple in a brushless DC motor with input voltage control. The commutation torque ripple can be controlled with varying input voltage, but cogging torque is independent on it. So, in this paper a strategy for minimizing torque ripple is proposed by offsetting the cogging torque with deliberate voltage control. The optimal condition is determined with variable voltage levels and advance angles. As results, it is shown that the method causes 63% decrease of torque ripple.

Research of Torque Ripple Reduction of BLDC Motor (BLDC 전동기의 토크리플 저감에 대한 연구)

  • Nam K.Y.;Hong J.P.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1455-1458
    • /
    • 2005
  • This paper presents the method of reducing torque ripple of Blushless Direct Current(BLDC) motor. In the BLDC motor, the torque is decided by the back-EMF and current waveform. If the back-EMF is constant, the torque ripple depends on the current ripple during commutation period. The current in commutation period is acquired by circuit analysis and then the torque ripple simply can be reduced by varying input voltage to flow the current continuously. And suggested method is confirmed by dynamic with parameters of 500W BLDC motor.

  • PDF

A New Current Control Method for Torque Ripple Reduction on Brushless DC Motor (Brushless DC Motor에서 토크리플 저감을 위한 새로운 전류제어 기법)

  • Kwon K.J.;Kim S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.575-578
    • /
    • 2003
  • This paper presents a new current control method to reduce torque ripple of Brushless DC Motor during commutation. In the proposed control strategy, the current slopes of rising and decaying phase during commutation is equalized by the compensation voltage. By adding the compensation voltage for it to the current controller output, the reduced torque ripple can be obtained. The simulation and experimental results show that the proposed method reduces the torque and the current ripples significantly.

  • PDF

An Improved Torque Ripple Minimization of Brushless DC Motor (개선된 Brushless DC Motor의 토크리플 최소화)

  • Chung, Jin-Hwa;Chung, Sun-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.298-302
    • /
    • 1994
  • Brushless DC motors have a trapezoidal back EMF wave form and are fed with rectangular stator currents. Under these conditions, the torque produced is theoretcally constant. However, in practice, torque ripple may exist, one major cause of which conies from phase current commutation. In this paper we propose an improved method of reducing the torque ripple due to phase current commutation of indirectly restricting the uncommutated current through control of the other phase currents. Simulation results are present.

  • PDF

A Commutations Strategy for Torque Ripple Reduction of Sensorless Drive for Brushless DC Motors (BLDC 전동기용 센서리스 드라이브의 토크 리플 저감을 위한 전환 방법에 관한 연구)

  • 여형기;김태형;이광운;박정배;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.199-205
    • /
    • 1998
  • Brushless DC motors have trapezoidal back-EMF waveform. Theoretically it should be fed with rectangular phase current in order to produce torque ripple free. Because it is drived by a voltage source inverter, perfect rectangular phase current can not available and therefore produce torque ripple. In this paper, the torque ripple due to commutation is analyzed and the practical method that can reduce the torque ripple is proposed. Experimental and simulation results show the effectiveness of the proposed method.

  • PDF

A Study on the Influence of Commutation Time on Torque Pulsating in BLDCM (BLDC 모터에서 전류시간이 토크맥동에 미치는 영향에 관한 연구)

  • Kim, Cheol-Ju;Gang, Byeong-Hui;Mok, Hyeong-Su;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • A BLDC motor has a serious drawback that torque pulsation is generated in every commutation period though it has many advatages compared to the conventional DC Motor. In this paper, the influence of commutation time on torque pulsation is studied. Generally in calculating the torque of BLDC motor, it is assumed that the decaying phase back EMF is constant, but the torque model considering decaying phase back EMF is introduced here. Through it, the torque in commutation period has torque pulsation component caused by commutation itself and it cannot be removed perfectly even if there is no current pulsation. To reduce the torque pulsation, a new method is proposed, which controls a point of commutation and the optimal point of commutation is found. Simulation shows that proposed method reduces the torque pulsation considerately.

  • PDF

Optimum Torque Control Method for BLDC Motor with Minimum Torque Pulsation (최소토크맥동을 갖는 BLDC 전동기의 최적제어)

  • 강병희;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2003
  • This paper studies that torque model considered with decaying phase back-EMF is different In conduction and commutation period and analyzes the torque pulsation components mathematically. In this paper, it is proposed a novel method to suppress torque pulsation due to commutation time. First, it propose commutation delay time control method, which is to compensate current slope of rising phase and decaying phase to control commutation time. Current ripple is minimized at non-commutating current and torque ripple is reduced below critical speed range that dc link voltage is the same as four times of back-EMF voltage. However, torque ripple still exists due to the relation with back-EMF and commutating current and it is increased on a large scale above critical speed range, especially. Secondly, proposed method is commutation time control, which is considered with torque pulsation due to the relation of back-EMF and commutating current. Through the proposed method, the torque pulsation can be minimized in the whole speed range as well as range over critical speed.

Torque Sharing Function of SRM for Torque Ripple Reduction in Commutation Region (커뮤테이션 구간의 토크리플 저감을 위한 SRM의 토크 분배 함수 기법)

  • Kim, Tae-Hyoung;Wang, Huijun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.148-150
    • /
    • 2007
  • A novel torque sharing function (TSF) is presented. To improve efficiency and to reduce torque ripple in commutation region, only a phase torque under commutation is regulated to produce a uniform torque. And the torque developed by the other phase remains with the previous state under a current limit of the motor and drive. If the minimum change of a phase torque reference can not satisfy the total reference torque, two-phase changing mode is used. Since a phase torque is constant and the other phase torque is changed at each rotor position, total torque error can be reduced within a phase torque error limit. And the total torque error is dependent on the change of phase torque. To consider non-linear torque characteristics and to suppress a tail current at the end of commutation region, the incoming phase current is changed to torque increasing direction, but the outgoing phase current is changed to torque decreasing direction. So, the torque sharing of the outgoing phase and incoming phase can be smoothly changed with a minimum current cross over. The proposed control scheme is verified by some computer simulations and experimental results.

  • PDF

Current Control Method for Torque Ripple Reduction in Brushless DC Motor (브러시리스 직류 전동기의 토크 맥동 저감을 위한 전류 제어 방식)

  • 이광운;홍희정;박정배;여형기;이인호;유지윤
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.3
    • /
    • pp.191-198
    • /
    • 1998
  • This paper presents a new current control method to reduce the torque ripple due to phase commutation, when the unipolar PWM method is applied for the phase current control of brushless DC motor. Phase commutation bring about an instantaneous change in the average voltage of conducting phase so that current undulates, and this undulating current generates torque ripple. In this paper, we analyze average voltage variations of conducting phase in commutation period with PWM pattern and design current controller to compensate average variations. In addition, we prove the validity of proposed method by experimental results.

  • PDF

Minimization of Torque-Ripple in Switched Reluctance Motors Over Wide Speed Range

  • Dowlatshahi, Milad;Saghaiannejad, Seyed Morteza;Ahn, Jin-Woo;Moallem, Mehdi
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.478-488
    • /
    • 2014
  • Torque pulsation mechanism and highly nonlinear magnetic characterization of switched reluctance motors(SRM) lead to unfavorable torque ripple and limit the variety of applications in industry. In this paper, a modification method proposed for torque ripple minimization of SRM based on conventional torque sharing functions(TSF) to improve maximum speed of torque ripple-free operation considering converter limitations. Due to increasing phase inductance in outgoing phase during the commutation region, reference current tracking can be deteriorated especially when the speed increased. Moreover, phase torque production in incoming phase may not be reached to the reference value near the turn-on angle in which the incremental inductance would be dramatically decreased. Torque error for outgoing phase can cause increasing the resultant motor torque while it would be negative for incoming phase and yields reducing the motor torque. In this paper, a modification method is proposed in which phase torque tracking error for each phase under the commutation added to the other phase so that the resultant torque remained in constant level. This yields to extend constant torque region and reduce peak phase current when the speed increased. Simulation and experimental results for four phase 4 KW, 8/6 SRM validate the effectiveness of the proposed scheme.