• Title/Summary/Keyword: commutation

Search Result 467, Processing Time 0.024 seconds

High Response and Precision Control of Electronic Throttle Controller Module without Hall Position Sensor for Detecting Rotor Position of BLDCM

  • Lee, Sang-Hun;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.97-103
    • /
    • 2013
  • This paper describes the characteristics of Electronic Throttle Controller (ETC) module in BLDC motor without the hall sensor for detecting a rotor position. The proposed ETC control system, which is mainly consisted of a BLDC motor, a throttle plate, a return spring and reduction gear, has a position sensor with an analogue voltage output on the throttle valve instead of BLDC motor for detecting the rotor position. So the additional commutation information is necessarily needed to control the ETC module. For this, the estimation method is applied. In order to improve and obtain the high resolution for the position control, it is generally needed to change the gear ratio of the module or the electrical switching method etc. In this paper, the 3-phase switching between successive commutations is adapted instead of the 2-phase switching that is conventionally used. In addition, the position control with a variable PI gain is applied to improve a dynamic response during a transient period and reduce vibration at a stop in case of matching position reference. The mentioned method can be used to estimate the commutation state and operate the high-precision position control for the ETC module and the high response characteristics. The validity of the proposed method is examined through the experimental results.

Improvement on the Laminated Busbar of NPC Three-Level Inverters based on a Supersymmetric Mirror Circulation 3D Cubical Thermal Model

  • He, Feng-You;Xu, Shi-Zhou;Geng, Cheng-Fei
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2085-2098
    • /
    • 2016
  • Laminated busbars with a low stray inductance are widely used in NPC three-level inverters, even though some of them have poor performances in heat equilibrium and overvoltage suppression. Therefore, a theoretical method is in need to establish an accurate mathematical model of laminated busbars and to calculate the impedance and stray inductance of each commutation loop to improve the heat equilibrium and overvoltage suppression performance. Firstly, an equivalent circuit of a NPC three-level inverter laminated busbar was built with an analysis of the commutation processes. Secondly, on the basis of a 3D (three dimensional) cubical thermal model and mirror circulation theory, a supersymmetric mirror circulation 3D cubical thermal model was built. Based on this, the laminated busbar was decomposed in 3D space to calculate the equivalent resistance and stray inductance in each commutation loop. Finally, the model and analysis results were put into a busbar design, simulation and experiments, whose results demonstrate the accuracy and feasibility of the proposed method.

New Voltage Sag/Swell Compensator Using Direct Power Conversion Method (직접전력변환 방식을 이용한 새로운 전압 sag/swell 보상기)

  • Cha, Han-Ju;Lee, Dae-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.267-269
    • /
    • 2006
  • In this paper, a new single phase voltage sag/swell compensator using direct power conversion is introduced. A new compensator consists of input/output filter, series transformer and direct ac-ac converter, which is a single-phase back-to-back PWM converter without dc-link capacitors. Advantages of the proposed compensator include: simple power circuit by eliminating dc-link electrolytic capacitors and thereby, improved reliability and increased life time of the entire compensator; simple PWM strategy to compensate voltage sag/swell at the same time and reduced switching losses in the ac-ac converter. Further, the proposed scheme is able to adopt simple switch commutation method without requiring complex four-step commutation method commonly required in the direct power conversion. Simulation results are shown to demonstrate the advantages of the new compensator and PWM strategy.

  • PDF

A High Efficiency Direct Instantaneous Torque Control of SRM based on the Nonlinear Model (비선형 모델기반 SRM의 고효율 직접 순시토크 제어)

  • An, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.6
    • /
    • pp.1047-1054
    • /
    • 2007
  • This paper presents a high efficiency direct instantaneous torque control (DITC) of Switched Reluctance Motor(SRM) based on the nonlinear model. The DITC method can reduce the high inherent torque ripple of SRM drive system, but drive efficiency is somewhat low due to the high current and switching loss during commutations. In order to reduce a torque ripple, a fast torque reference trajectory is selected at every instantaneous rotor position. Based on the nonlinear model of SRM, the developing torque by one phase is fixed and the other phase is regulated for minimum switchings of phase switch and variation of torque. The switching during commutation can be reduced and fast commutation can be obtained in the proposed method. As a result, drive efficiency could be improved as well as torque ripple reduction. The validity of proposed method is verified by computer simulations and comparative experiments.

A Effect of Saturable Reactor-Resistor Pair on High Power SCR Chopper (대전력 SCR 초퍼에서 가포하리액터-저항짝의 효과)

  • 강민구;조규형
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.7
    • /
    • pp.442-447
    • /
    • 1988
  • Saturable reactor-resistor pair is proposed as a part of snubber and applied to a hard commutation chopper. SCR turn off process is modeled to simulate the hard commutation chopper. State equations are derived for each mode of the chopper and they are solved by Runge-Kutta 4th order method. It is shown that the reverse voltage spike and reverse dv/dt can be minimized by applying saturable reactor-resistor pair to the chopper which controls peak reverse recovery current and damping factor. Saturable reactor-resistor pair can be used to reduced SCR power loss and value of snubber capacitor and can be applied to high power thyristor devices.

  • PDF

Currant Source GTO Inverter with Double Recovery Path of Commutation Energy by LCD (수동소자에 의한 축적에너지 2중 궤환방식 전류형 GTO 인버터의 입.출력 특성)

  • Kim, Jin-Pyo;Choi, Sang-Won;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2104-2106
    • /
    • 1997
  • In order to develop the three phase GTO CSI with double recovery path of commutation energy by passive devices (LCD), we studied the clamping circuit to protect switching device and energy recovery circuit to recover absorbed energy of capacitor and DC inductor. In this paper, we investigated how DC input power is increased or decreased according to energy recovery path with or not in the three phase GTO current source inverter, we used a induction motor as inverter load, and controlled a induction motor with v/f constant control. Experimental results show that dissipated DC power is decreased in $9{\sim}14%$ by double recovery path. We also confirmed that the characteristics is met as compare simulation results with experimental results according to each frequency.

  • PDF

Lossless Inductor Snubber-Assisted ZCS-PFM High Frequency Series Resonant Inverter for Eddy Current-Heated Roller

  • Feng Y. L.;Ishitobi M.;Okuno A.;Nakaoka M.;Lee H. W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.304-308
    • /
    • 2001
  • This paper presents a novel prototype of ZCS-PFM high frequency series resonant inverter using IGBT power module for electromagnetic induction eddy current-heated roller in copy and printing machines. The operating principle and unique features of this voltage source half bridge inverter with two additional soft commutation inductor snubber are presented including the transformer modeling of induction heated rolling drum. This soft switching inverter can achieve stable zero current soft commutation under a discontinuous and continuous resonant load current for a widely specified power regulation processing. The experimental results and computer-aided analysis of this inverter are discussed from a practical point of view.

  • PDF

Research of Torque Ripple Reduction of BLDC Motor (BLDC 전동기의 토크리플 저감에 대한 연구)

  • Nam K.Y.;Hong J.P.;Lee C.M.;Chung W.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1455-1458
    • /
    • 2005
  • This paper presents the method of reducing torque ripple of Blushless Direct Current(BLDC) motor. In the BLDC motor, the torque is decided by the back-EMF and current waveform. If the back-EMF is constant, the torque ripple depends on the current ripple during commutation period. The current in commutation period is acquired by circuit analysis and then the torque ripple simply can be reduced by varying input voltage to flow the current continuously. And suggested method is confirmed by dynamic with parameters of 500W BLDC motor.

  • PDF

Driving of Induction Motor Using The Line-Commutated Inverter (타려식 인버터를 이용한 농형유도전동기의 구동)

  • Chung, Y.T.;Sim, J.M.;Lee, S.Y.;Soh, Y.C.;Shin, C.S.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.579-582
    • /
    • 1991
  • It is impossible to drive induction motor through line-commutated inverter without the forced-commutation. Therefore, the forced-commutated circuit is proposed in this paper. The line-commutated inverter is operated by load commutation in abovea half of the rated frequency. In this paper, the experimental result is presented by the IM driving.

  • PDF

2-Stage Commutated SRM with Auxiliary Winding for Reduction of Acoustic Noise

  • Jung, Tae-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.7
    • /
    • pp.22-27
    • /
    • 2008
  • A new excitation strategy for a Switched Reluctance Motor with Auxiliary Winding(SRMAW) is described and tested. The proposed scheme has auxiliary winding with one diode which is wound over all poles in one winding. In this scheme, auxiliary winding is used to reduce magnetic stress during commutations. The abrupt change of a phase excitation produces mechanical stresses resulting in vibration and noise. The acoustic noise is reduced remarkably through the 2-stage commutation. The operational principle and a characteristic comparison of the conventional SRM show that this scheme has some advantages including noise reduction as well as high drive efficiency.