• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.034 seconds

Mobile Contents Transformation System Research for Personalization Service (개인화 서비스를 위한 모바일 콘텐츠 변환 시스템 연구)

  • Bae, Jong-Hwan;Cho, Young-Hee;Lee, Jung-Jae;Kim, Nam-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.2
    • /
    • pp.119-128
    • /
    • 2011
  • The Sensor technology and portable device capability able to collect recent user information and the information about the surrounding environment haven been highly developed. A user can be made use of various contents and the option is also extending with this technology development. In particular, the initial portable device had simply a call function, but now that has evolved into 'the 4th screen' which including movie, television, PC ability. also, in the past, a portable device to provided only the services of a SMS, in recent years, it provided to interactive video service, and it include technology which providing various contents. Also, it is rising as media which leading the consumption of contents, because it can be used anytime, anywhere. However, the contents available for the nature of user's handheld devices are limited. because it is very difficult for making the contents separately according to various device specification. To find a solution to this problem, the study on one contents from several device has been progressing. The contents conversion technology making use of the profile of device out of this study comes to the force and profile study has been progressing for this. Furthermore, Demand for a user is also increased and the study on the technology collecting, analyzing demands has been making active progress. And what is more, Grasping user's demands by making use of this technology and the study on the technology analyzing, providing contents has been making active progress as well. First of all, there is a method making good use of ZigBee, Bluetooth technology about the sensor for gathering user's information. ZigBee uses low-power digital radio for wireless headphone, wireless communication network, and being utilized for smart energy, automatic home system, wireless communication application and wireless sensor application. Bluetooth, as industry standards of PAN(Personal Area Networks), is being made of use of low power wireless device for the technology supporting data transmission such as drawing file, video file among Bluetooth device. With analyzing the collected information making use of this technology, it utilizes personalized service based on network knowledge developed by ETRI to service contents tailor-made for a user. Now that personalized service builds up network knowledge about user's various environments, the technology provides context friendly service constructed dynamically on the basis of this. The contents to service dynamically like this offer the contents that it converses with utilizing device profile to working well. Therefore, this paper suggests the system as follow. It collects the information, for example of user's sensitivity, context and location by using sensor technology, and generates the profile as a means of collected information as sensor. It collects the user's propensity to the information by user's input and event and generates profile in the same way besides the gathered information by sensor. Device transmits a generated profile and the profile about a device specification to proxy server. And proxy server transmits a profile to each profile management server. It analyzes profile in proxy server so that it selects the contents user demand and requests in contents server. Contents server receives a profile of user portable device from device profile server and converses the contents by using this. Original source code of contents convert into XML code using the device profile and XML code convert into source code available in user portable device. Thus, contents conversion process is terminated and user friendly system is completed as the user transmits optimal contents for user portable device.

A Study on Antecedents of Ethical Leadership of Power Retailers, : Focusing on the Relationship between Discount Stores and Their Suppliers (대형 유통업체 윤리적 리더십의 선행변수에 관한 연구 : 할인점과 공급업체 간 관계를 중심으로)

  • Kim, Sang-Deok
    • Journal of Distribution Research
    • /
    • v.17 no.3
    • /
    • pp.59-92
    • /
    • 2012
  • With accumulated research evidence, there is little doubt that leadership behavior is related to a wide variety of positive individual and organizational outcomes. Indeed, leadership behavior has been empirically linked to increased employee satisfaction, organizational commitment, extra effort, turnover intention, organizational citizenship behavior, and overall employee performance. Although leadership behavior has been linked to a number of positive organizational outcomes, research regarding the antecedents of such behavior is limited. Especially there is little research dealing with the antecedents of inter-organizational leadership behavior. This study interests in inter-organizational ethical leadership among marketing channel members. In both the mass media and the academic association, there has been a surge in interest in the ethical and unethical behavior of leaders. Although the corporate scandals in recent years may explain much of the mass media and popular focus, academics' interest has been limited by evidence that ethical leadership behavior is associated with both positive and negative inter-organizational processes and performances. This study tried to contribute to this body of knowledge by examining antecedents of ethical leadership. Ethical leadership is defined "the demonstration of normatively appropriate conduct through personal actions and interpersonal relationships, and the promotion of such conduct to followers through two-way communication, reinforcement, and decision-making." Ethical leaders not only inform individuals of the behefits of ethical behavior and the cost of inappropriate behavior, such leaders also set clear standards and use rewards and fair and balanced punishment to hold followers accountable for their ethical conduct. Despite the assume importance and prominence of ethical leadership among organizations, there are still many questions relating to its antecedents and consequences. One is whether the likelihood of an leading organization being perceived as an ethical leader among other following organizations in marketing channels can be predicted using its characteristics and inter-organizational relationship maintenance skills. Identifying trait and skill antecedents will aid in the development of strategies for selecting and developing ethical leaders and determining the best means to reinforce ethical behaviors. The purpose of this study is to investigate the effects of three categorized variables on ethical leadership of channel leader. To be concrete, this study develops a model of the antecedents of three conceptually distinct forms of channel leader characteristics, such as organizational traits, inter-organizational relationship maintenance strategies, and supplier management strategies, and tests the hypothesized differential effects on ethical leadership of marketing channel leaders. The reason why this study deals with discount store channel is that there is very strong inter-dependence between a discount store and its suppliers. Their strong inter-dependence makes their relationship as the relationship between a leader and suppliers and creates an atmosphere that leadership occur without difficulty. The research model is as follows. For the purpose of empirical testing, 295 respondents of suppliers of discount store channel in Korea were surveyed. The procedures included scale reliability, and discriminant and convergent validity were used to validate measures. Also, the reliability measurements traditionally employed, such as the Cronbach's alpha, were used. All the reliabilities were greater than .70. This study conducted confirmatory factor analyses to assess the validity of our measurements. All items loaded significantly on their respective constructs(with the lowest t-value being 15.2), providing support for convergent validity. We then examined composite reliability and average variance extracted(AVE). The composite reliability of each construct was greater than .70. The AVE of each construct was greater than .50. This study tested research model using Partial Least Square(PLS). The estimation of the structural equation model revealed an acceptable fit of the model to the data($r^2$=.851). Thus, This study concluded that the model fit was considered acceptable. The results of PLS are as follows. The results indicated that conscientiousness, openness, conflict management, social networks, training, fair reward had positive effects on ethical leadership of channel leaders. On the other hand, emotional insecure had negative effect and agreeableness, assurance, and inter-organizational communication had no significant effect on supply chain leadership.

  • PDF

A Study for Factors Influencing the Usage Increase and Decrease of Mobile Data Service: Based on The Two Factor Theory (모바일 데이터 서비스 사용량 증감에 영향을 미치는 요인들에 관한 연구: 이요인 이론(Two Factor Theory)을 바탕으로)

  • Lee, Sang-Hoon;Kim, Il-Kyung;Lee, Ho-Geun;Park, Hyun-Jee
    • Asia pacific journal of information systems
    • /
    • v.17 no.2
    • /
    • pp.97-122
    • /
    • 2007
  • Conventional networking and telecommunications infrastructure characterized by wires, fixed location, and inflexibility is giving way to mobile technologies. Numerous research reports point to the ultimate domination of wireless communication. With the increasing prevalence of advanced cell-phones, various mobile data services (hereafter MDS) are gaining popularity. Although cellular networks were originally introduced for voice communications, statistics indicate that data services are replacing the matured voice service as the growth engine for telecom service providers. For example, SK Telecom, the Korea's largest mobile service provider, reported that 25.6% of revenue and 28.5% of profit came from MDS in 2006 and the share is growing. Statistics also indicate that, in 2006, the average revenue per user (ARPU) for voice didn't change but MDS grew seven percents from the previous year, further highlighting its growth potential. MDS is defined "as an assortment of digital data services that can be accessed using a mobile device over a wide geographic area." A variety of MDS have been deployed, with a few reaching the status of killer applications. Many of them need to access the Internet through the cellular-phone infrastructure. In the past, when the cellular network didn't have acceptable bandwidth for data services, SMS (short messaging service) dominated MDS. Now, Internet-ready, next-generation cell-phones are driving rich digital data services into the fabric of everyday life, These include news on various topics, Internet search, mapping and location-based information, mobile banking and gaming, downloading (i.e., screen savers), multimedia streaming, and various communication services (i.e., email, short messaging, messenger, and chaffing). The huge economic stake MDS has on its stakeholders warrants focused research to understand associated dynamics behind its adoption. Lyytinen and Yoo(2002) pointed out the limitation of traditional adoption models in explaining the rapid diffusion of innovations such as P2P or mobile services. Also, despite the increasing popularity of MDS, unexpected drop in its usage is observed among some people. Intrigued by these observations, an exploratory study was conducted to examine decision factors of MDS usage. Data analysis revealed that the increase and decrease of MDS use was influenced by different forces. The findings of the exploratory study triggered our confirmatory research effort to validate the uni-directionality of studied factors in affecting MDS usage. This differs from extant studies of IS/IT adoption that are largely grounded on the assumption of bi-directionality of explanatory variables in determining the level of dependent variables (i.e., user satisfaction, service usage). The research goal is, therefore, to examine if increase and decrease in the usage of MDS are explained by two separate groups of variables pertaining to information quality and system quality. For this, we investigate following research questions: (1) Does the information quality of MDS increase service usage?; (2) Does the system quality of MDS decrease service usage?; and (3) Does user motivation for subscribing MDS moderate the effect information and system quality have on service usage? The research questions and subsequent analysis are grounded on the two factor theory pioneered by Hertzberg et al(1959). To answer the research questions, in the first, an exploratory study based on 378 survey responses was conducted to learn about important decision factors of MDS usage. It revealed discrepancy between the influencing forces of usage increase and those of usage decrease. Based on the findings from the exploratory study and the two-factor theory, we postulated information quality as the motivator and system quality as the de-motivator (or hygiene) of MDS. Then, a confirmative study was undertaken on their respective role in encouraging and discouraging the usage of mobile data service.

Effects of Customers' Relationship Networks on Organizational Performance: Focusing on Facebook Fan Page (고객 간 관계 네트워크가 조직성과에 미치는 영향: 페이스북 기업 팬페이지를 중심으로)

  • Jeon, Su-Hyeon;Kwahk, Kee-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • It is a rising trend that the number of users using one of the social media channels, the Social Network Service, so called the SNS, is getting increased. As per to this social trend, more companies have interest in this networking platform and start to invest their funds in it. It has received much attention as a tool spreading and expanding the message that a company wants to deliver to its customers and has been recognized as an important channel in terms of the relationship marketing with them. The environment of media that is radically changing these days makes possible for companies to approach their customers in various ways. Particularly, the social network service, which has been developed rapidly, provides the environment that customers can freely talk about products. For companies, it also works as a channel that gives customized information to customers. To succeed in the online environment, companies need to not only build the relationship between companies and customers but focus on the relationship between customers as well. In response to the online environment with the continuous development of technology, companies have tirelessly made the novel marketing strategy. Especially, as the one-to-one marketing to customers become available, it is more important for companies to maintain the relationship marketing with their customers. Among many SNS, Facebook, which many companies use as a communication channel, provides a fan page service for each company that supports its business. Facebook fan page is the platform that the event, information and announcement can be shared with customers using texts, videos, and pictures. Companies open their own fan pages in order to inform their companies and businesses. Such page functions as the websites of companies and has a characteristic of their brand communities such as blogs as well. As Facebook has become the major communication medium with customers, companies recognize its importance as the effective marketing channel, but they still need to investigate their business performances by using Facebook. Although there are infinite potentials in Facebook fan page that even has a function as a community between users, which other platforms do not, it is incomplete to regard companies' Facebook fan pages as communities and analyze them. In this study, it explores the relationship among customers through the network of the Facebook fan page users. The previous studies on a company's Facebook fan page were focused on finding out the effective operational direction by analyzing the use state of the company. However, in this study, it draws out the structural variable of the network, which customer committment can be measured by applying the social network analysis methodology and investigates the influence of the structural characteristics of network on the business performance of companies in an empirical way. Through each company's Facebook fan page, the network of users who engaged in the communication with each company is exploited and it is the one-mode undirected binary network that respectively regards users and the relationship of them in terms of their marketing activities as the node and link. In this network, it draws out the structural variable of network that can explain the customer commitment, who pressed "like," made comments and shared the Facebook marketing message, of each company by calculating density, global clustering coefficient, mean geodesic distance, diameter. By exploiting companies' historical performance such as net income and Tobin's Q indicator as the result variables, this study investigates influence on companies' business performances. For this purpose, it collects the network data on the subjects of 54 companies among KOSPI-listed companies, which have posted more than 100 articles on their Facebook fan pages during the data collection period. Then it draws out the network indicator of each company. The indicator related to companies' performances is calculated, based on the posted value on DART website of the Financial Supervisory Service. From the academic perspective, this study suggests a new approach through the social network analysis methodology to researchers who attempt to study the business-purpose utilization of the social media channel. From the practical perspective, this study proposes the more substantive marketing performance measurements to companies performing marketing activities through the social media and it is expected that it will bring a foundation of establishing smart business strategies by using the network indicators.

Construction of Event Networks from Large News Data Using Text Mining Techniques (텍스트 마이닝 기법을 적용한 뉴스 데이터에서의 사건 네트워크 구축)

  • Lee, Minchul;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.183-203
    • /
    • 2018
  • News articles are the most suitable medium for examining the events occurring at home and abroad. Especially, as the development of information and communication technology has brought various kinds of online news media, the news about the events occurring in society has increased greatly. So automatically summarizing key events from massive amounts of news data will help users to look at many of the events at a glance. In addition, if we build and provide an event network based on the relevance of events, it will be able to greatly help the reader in understanding the current events. In this study, we propose a method for extracting event networks from large news text data. To this end, we first collected Korean political and social articles from March 2016 to March 2017, and integrated the synonyms by leaving only meaningful words through preprocessing using NPMI and Word2Vec. Latent Dirichlet allocation (LDA) topic modeling was used to calculate the subject distribution by date and to find the peak of the subject distribution and to detect the event. A total of 32 topics were extracted from the topic modeling, and the point of occurrence of the event was deduced by looking at the point at which each subject distribution surged. As a result, a total of 85 events were detected, but the final 16 events were filtered and presented using the Gaussian smoothing technique. We also calculated the relevance score between events detected to construct the event network. Using the cosine coefficient between the co-occurred events, we calculated the relevance between the events and connected the events to construct the event network. Finally, we set up the event network by setting each event to each vertex and the relevance score between events to the vertices connecting the vertices. The event network constructed in our methods helped us to sort out major events in the political and social fields in Korea that occurred in the last one year in chronological order and at the same time identify which events are related to certain events. Our approach differs from existing event detection methods in that LDA topic modeling makes it possible to easily analyze large amounts of data and to identify the relevance of events that were difficult to detect in existing event detection. We applied various text mining techniques and Word2vec technique in the text preprocessing to improve the accuracy of the extraction of proper nouns and synthetic nouns, which have been difficult in analyzing existing Korean texts, can be found. In this study, the detection and network configuration techniques of the event have the following advantages in practical application. First, LDA topic modeling, which is unsupervised learning, can easily analyze subject and topic words and distribution from huge amount of data. Also, by using the date information of the collected news articles, it is possible to express the distribution by topic in a time series. Second, we can find out the connection of events in the form of present and summarized form by calculating relevance score and constructing event network by using simultaneous occurrence of topics that are difficult to grasp in existing event detection. It can be seen from the fact that the inter-event relevance-based event network proposed in this study was actually constructed in order of occurrence time. It is also possible to identify what happened as a starting point for a series of events through the event network. The limitation of this study is that the characteristics of LDA topic modeling have different results according to the initial parameters and the number of subjects, and the subject and event name of the analysis result should be given by the subjective judgment of the researcher. Also, since each topic is assumed to be exclusive and independent, it does not take into account the relevance between themes. Subsequent studies need to calculate the relevance between events that are not covered in this study or those that belong to the same subject.

Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques (텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석)

  • Bae, Jung-Hwan;Son, Ji-Eun;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.141-156
    • /
    • 2013
  • Social media is a representative form of the Web 2.0 that shapes the change of a user's information behavior by allowing users to produce their own contents without any expert skills. In particular, as a new communication medium, it has a profound impact on the social change by enabling users to communicate with the masses and acquaintances their opinions and thoughts. Social media data plays a significant role in an emerging Big Data arena. A variety of research areas such as social network analysis, opinion mining, and so on, therefore, have paid attention to discover meaningful information from vast amounts of data buried in social media. Social media has recently become main foci to the field of Information Retrieval and Text Mining because not only it produces massive unstructured textual data in real-time but also it serves as an influential channel for opinion leading. But most of the previous studies have adopted broad-brush and limited approaches. These approaches have made it difficult to find and analyze new information. To overcome these limitations, we developed a real-time Twitter trend mining system to capture the trend in real-time processing big stream datasets of Twitter. The system offers the functions of term co-occurrence retrieval, visualization of Twitter users by query, similarity calculation between two users, topic modeling to keep track of changes of topical trend, and mention-based user network analysis. In addition, we conducted a case study on the 2012 Korean presidential election. We collected 1,737,969 tweets which contain candidates' name and election on Twitter in Korea (http://www.twitter.com/) for one month in 2012 (October 1 to October 31). The case study shows that the system provides useful information and detects the trend of society effectively. The system also retrieves the list of terms co-occurred by given query terms. We compare the results of term co-occurrence retrieval by giving influential candidates' name, 'Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn' as query terms. General terms which are related to presidential election such as 'Presidential Election', 'Proclamation in Support', Public opinion poll' appear frequently. Also the results show specific terms that differentiate each candidate's feature such as 'Park Jung Hee' and 'Yuk Young Su' from the query 'Guen Hae Park', 'a single candidacy agreement' and 'Time of voting extension' from the query 'Jae In Moon' and 'a single candidacy agreement' and 'down contract' from the query 'Chul Su Ahn'. Our system not only extracts 10 topics along with related terms but also shows topics' dynamic changes over time by employing the multinomial Latent Dirichlet Allocation technique. Each topic can show one of two types of patterns-Rising tendency and Falling tendencydepending on the change of the probability distribution. To determine the relationship between topic trends in Twitter and social issues in the real world, we compare topic trends with related news articles. We are able to identify that Twitter can track the issue faster than the other media, newspapers. The user network in Twitter is different from those of other social media because of distinctive characteristics of making relationships in Twitter. Twitter users can make their relationships by exchanging mentions. We visualize and analyze mention based networks of 136,754 users. We put three candidates' name as query terms-Geun Hae Park', 'Jae In Moon', and 'Chul Su Ahn'. The results show that Twitter users mention all candidates' name regardless of their political tendencies. This case study discloses that Twitter could be an effective tool to detect and predict dynamic changes of social issues, and mention-based user networks could show different aspects of user behavior as a unique network that is uniquely found in Twitter.

Field Application of Waterworks Automatic Meter Reading and Analysis of Household Water Use (상수도 원격검침시스템의 현장 적용성 평가 및 가정용수 사용량 분석)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuck;Ko, Kyung-Rok;Oh, Hyun Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.656-663
    • /
    • 2012
  • After the construction of waterworks automatic meter reading with 15 mm diameter digital water mater with magnetoresistance sensor developed in this study at 96 households of apartment complexes located in Incheon-City B-Gu S-Dong, the feasibility of field application of waterworks automatic meter reading was evaluated. The field application of waterworks automatic meter reading was performed from July to December in 2011, and average reception rate was as low as 84.6% due to the instable wibro networks, the existence of communication blackout and temporary malfunction of router. After the extraction of 10 households with one to five residents out of 96 households by using stratified random sampling method and analysis of domestic water use, it was found that domestic water use was significant at August and showed a decreasing trend at September, followed by increase in domestic water use at November and decrease in domestic water use at December. This phenomenon should be attributed to weather factors (temperature, humidity, etc.), which significantly affected domestic water use. Similar trend in domestic water use in terms of weather factors was obtained in case of Liter per capita day of water use after the extraction of 30 households out of 96 households by using stratified random sampling method. After analysis of Liter per capita day for 96 households, single residents increases resulted in reduction of domestic water usage by about 14% of Liter per capita day. These results might be due to the fact that domestic water usage such as laundry, beverages, catering, cleaning, etc. should be required for even the household with one resident, whereas domestic water usage for those common utilization can be significantly saved for the household with more than one resident.

A Time Series Analysis of Urban Park Behavior Using Big Data (빅데이터를 활용한 도시공원 이용행태 특성의 시계열 분석)

  • Woo, Kyung-Sook;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.1
    • /
    • pp.35-45
    • /
    • 2020
  • This study focused on the park as a space to support the behavior of urban citizens in modern society. Modern city parks are not spaces that play a specific role but are used by many people, so their function and meaning may change depending on the user's behavior. In addition, current online data may determine the selection of parks to visit or the usage of parks. Therefore, this study analyzed the change of behavior in Yeouido Park, Yeouido Hangang Park, and Yangjae Citizen's Forest from 2000 to 2018 by utilizing a time series analysis. The analysis method used Big Data techniques such as text mining and social network analysis. The summary of the study is as follows. The usage behavior of Yeouido Park has changed over time to "Ride" (Dynamic Behavior) for the first period (I), "Take" (Information Communication Service Behavior) for the second period (II), "See" (Communicative Behavior) for the third period (III), and "Eat" (Energy Source Behavior) for the fourth period (IV). In the case of Yangjae Citizens' Forest, the usage behavior has changed over time to "Walk" (Dynamic Behavior) for the first, second, and third periods (I), (II), (III) and "Play" (Dynamic Behavior) for the fourth period (IV). Looking at the factors affecting behavior, Yeouido Park was had various factors related to sports, leisure, culture, art, and spare time compared to Yangjae Citizens' Forest. The differences in Yangjae Citizens' Forest that affected its main usage behavior were various elements of natural resources. Second, the behavior of the target areas was found to be focused on certain main behaviors over time and played a role in selecting or limiting future behaviors. These results indicate that the space and facilities of the target areas had not been utilized evenly, as various behaviors have not occurred, however, a certain main behavior has appeared in the target areas. This study has great significance in that it analyzes the usage of urban parks using Big Data techniques, and determined that urban parks are transformed into play spaces where consumption progressed beyond the role of rest and walking. The behavior occurring in modern urban parks is changing in quantity and content. Therefore, through various types of discussions based on the results of the behavior collected through Big Data, we can better understand how citizens are using city parks. This study found that the behavior associated with static behavior in both parks had a great impact on other behaviors.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

A Study about The Impact of Music Recommender Systems on Online Digital Music Rankings (음원 추천시스템이 온라인 디지털 음원차트에 미치는 파급효과에 대한 연구)

  • Kim, HyunMo;Kim, MinYong;Park, JaeHong
    • Information Systems Review
    • /
    • v.16 no.3
    • /
    • pp.49-68
    • /
    • 2014
  • These days, consumers have increasingly preferred to digital real-time streamlining and downloading to listen to music because this is convenient and affordable for the consumers. Accordingly, sales of music in compact disk formats have steadily declined. In this regards, online digital music has become a new communication channel to listen musics, where digital files can be delivered over various online networks to people's computing devices. The majority of online digital music distributors has Music Recommender Systems for sales of digital music on their websites. Music Recommender Systems are parts of information filtering systems that provide the ratings or preferences that users give to music. Korean online digital music distributors have Music Recommender Systems. But those online music distributors didn't provide any rules or clear procedures that recommend music. Therefore, we raise important questions as follows: "Is Music Recommender Systems Fair?", "What is the impact of Music Recommender Systems on online music rankings and sales?" While previous studies have focused on usefulness of Music Recommender Systems, this study investigates not only fairness of Current Music Recommender Systems but also Relationship between Music Recommender Systems and online Music Charts. This study examines these issues based on Bandwagon effect, ranking effect, Slot effect theories. For our empirical analysis, we selected the most famous five online digital music distributors in terms of market shares. We found that all recommended music is exposed to the top of 'daily music charts' in online digital music distributors' websites. We collected music ranking data and recommended music data from 'daily music chart' during a one month. The result shows that online music recommender systems are not fair, since they mainly recommend particular music that supported by a specific music production company. In addition, the recommended music are always exposed to the top of music ranking charts. We also find that recommended music usually appear at the top 20 ranking charts within one or two days. Also, the most music in the top 50 or 100 ranks are the recommended music. Moreover, recommended music usually remain the ranking charts more than one month while non-recommended music often disappear at the ranking charts within two week. Our study provides an important implication to online music industry. Because music recommender systems and music ranking charts are closely related, music distributors may improperly use their recommender systems to boost the sales of music that related to their own companies. Therefore, online digital music distributor must clearly announce the rules and procedures about music recommender systems for the better music industry.