• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.028 seconds

On the Handling of Node Failures: Energy-Efficient Job Allocation Algorithm for Real-time Sensor Networks

  • Karimi, Hamid;Kargahi, Mehdi;Yazdani, Nasser
    • Journal of Information Processing Systems
    • /
    • v.6 no.3
    • /
    • pp.413-434
    • /
    • 2010
  • Wireless sensor networks are usually characterized by dense deployment of energy constrained nodes. Due to the usage of a large number of sensor nodes in uncontrolled hostile or harsh environments, node failure is a common event in these systems. Another common reason for node failure is the exhaustion of their energy resources and node inactivation. Such failures can have adverse effects on the quality of the real-time services in Wireless Sensor Networks (WSNs). To avoid such degradations, it is necessary that the failures be recovered in a proper manner to sustain network operation. In this paper we present a dynamic Energy efficient Real-Time Job Allocation (ERTJA) algorithm for handling node failures in a cluster of sensor nodes with the consideration of communication energy and time overheads besides the nodes' characteristics. ERTJA relies on the computation power of cluster members for handling a node failure. It also tries to minimize the energy consumption of the cluster by minimum activation of the sleeping nodes. The resulting system can then guarantee the Quality of Service (QoS) of the cluster application. Further, when the number of sleeping nodes is limited, the proposed algorithm uses the idle times of the active nodes to engage a graceful QoS degradation in the cluster. Simulation results show significant performance improvements of ERTJA in terms of the energy conservation and the probability of meeting deadlines compared with the other studied algorithms.

PCISS Scheme for Minimize Prove Delay in Wireless Mesh Networks (무선 메쉬 네트워크 환경에서 프로브 지연을 최소화한 PCISS 기법)

  • Cho, Young-Bok;Lee, Sang-Ho
    • Journal of Convergence Society for SMB
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 2012
  • Recently Wireless Communication technologies are widely used in Small And Medium Business fields. Wireless mesh networks have been studied as the next generation technology to solve problem of conventional wireless networks. Wireless mesh network uses a 802.11 when make up of network. mesh clients occurs Hard handover moving between ones. This increases the handover latency of the network mobility is a very great issues. Consequently, this paper propose a channel information previously methods to reduce the handover latency selective channels. Proposed scheme accounts for more than 90% of the probe delay to minimize the client had to move the mesh based on the old channel to retrieve information. Through simulation, the proposed scheme had shorter handover delay time than transitional full scan and selective scan. Through results of evaluation, the suggest PCISS scheme more fast 6.5% than transitional scheme.

  • PDF

A Transfer Rate-Based Congestion Control Algorithm for ABR Service in ATM Networks (ATM 망에서 ABR 서비스를 위한 전송률 기반 폭주 제어 알고리즘)

  • Cho, Sung-Goo;Cho, Sung-Hyun;Oh, Yoon-Tak;Park, Sung-Han
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.9
    • /
    • pp.28-34
    • /
    • 1998
  • In ATM networks CBR data traffic is sent in constant bit rate, and VBR data traffic in variable bit rate. Therefore unused bandwidth at network capacity may exist. To avoid waste of network resourcesm, ABR traffic utilizes the unused bandwidth to the utmost after CBR and VBR data traffic being first served. In this paper, a transfer rate-based congestion control algorithm is proposed for efficient ABR service in ATM networks. In the proposed algorithm the ATM switch first calculates bandwidth according to variable cell transfer rate in an ABR source. records this value in ER field in a RM cell, and then transmits a RM Cell to an ABR source. In this way the proposed algorithm dynamically allocates bandwidth to each ABR source, and the switch also can rapidly adapt to a change of a transfer rate of an source. The performance simulation of the proposed algorithm has batter performance in terms of source condition and link utilization.

  • PDF

Geomulticast: Location based Multicast Routing Protocol using Route Stability in Mobile Ad-hoc Wireless Networks (지오멀티캐스트: 모바일 Ad-hoc 무선 네트워크에서 경로 안정성을 이용한 위치기반 멀티캐스트 라우팅 프로토콜)

  • Ha, Sue Hyung;Le, The Dung;An, Beongku
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.191-201
    • /
    • 2013
  • In this paper, we propose a location based multicast routing protocol, called Geomulticast, in mobile ad-hoc wireless networks. The main features and contributions of the proposed geomulticast are as follows. First, support data transmission to only the specific mobile nodes within a target area. Second, establish stable routing route by using mobility information of nodes. Third, reduce control overhead, power for construction of routing route by using geomulticast guided line information. Fourth, present a theoretical model for establishing stable route. The performance evaluation of the proposed geomulticast is executed by using OPNET simulation and theoretical analysis, and the results of simulation and theoretical analysis have similar patterns. And we can see that data packets are efficiently transmitted to specific user groups within a specific area.

Design of Improved Authentication Protocol for Sensor Networks in IoT Environment (사물인터넷 환경에서 센서 네트워크에 대한 개선된 인증 프로토콜 설계)

  • Kim, Deuk-Hun;Kwak, Jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.2
    • /
    • pp.467-478
    • /
    • 2015
  • Recently interest in Internet of Things(IoT) is increasing, and a variety of the security technologies that are suitable for Internet of Things has being studied. Especially sensor network area of the device is an increased using and diversified for a low specification devices because of characteristic of the Internet of Things. However, there is difficulty in directly applying the security technologies such as the current authentication technologies to a low specification device, so also increased security threats. Therefore, authentication protocol between entities on the sensor network communication in Internet of Things has being studied. In 2014, Porambage et al. suggested elliptic curve cryptography algorithm based on a sensor network authentication protocol for advance security of Internet of Things environment, but it is vulnerability exists. Accordingly, in this paper, we analyze the vulnerability in elliptic curve cryptography algorithm based on authentication protocol proposed by Porambage et al. and propose an improved authentication protocol for sensor networks in Internet of Things environment.

VLSI Design and Implementation of Multimedia Transport Protocol for Reliable Networks

  • Jong-Wook Jang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.1 no.1
    • /
    • pp.21-33
    • /
    • 1997
  • This dissertation deals with the design and VLSI implementation of the MTP(Multimedia Transport Protocol) protocol for the high speed networks. High throughput, functional diversity and flexible adaptation are key requirements for the future transport protocol. However it is very difficult to satisfy all these requirements simultaneously. Fortunately, the future networks will be very reliable. It means that the future transport protocol will usually perform some fixed functions without the protocol state information. According to this concept, we proposed and designed the MTP protocol that is consisted of Information Plane and Control Plane. Information Plane performs some fixed functions that are independent of the protocol state information as far as no error. However Control Plane manages the protocol state information and controls the operation of Information Plane. Our MTP protocol was finally implemented as an FPGA chip using the VHDL. We built a testbed for verification of the implemented protocol, and it was shown that the MTP protocol worked correctly and made a throughput of about 800 Mbps. Our future works include the addition of multiplexing and multicasting capabilities to our protocol for multimedia applications.

  • PDF

A Sensor nodes' Residual Energy based Wake-up Control Mechanism in Wireless Sensor Networks (무선 센서 네트워크에서 센서 노드의 잔여 에너지 기반 Wake-up 제어 메커니즘)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.187-192
    • /
    • 2017
  • In dense deployments of sensor nodes in Wireless Sensor Networks, the MAC protocol has challenges to solve problems such as reducing delivery delay and reducing energy consumption. To solve these problems lots of protocols are suggested. This paper proposed a sensor nodes' residual energy based wake-up control mechanism, in which each node decides whether it wakes up or stays in sleep mode to save energy consumption by reducing unnecessary idle listening. The main idea of the wake-up control mechanism is to save node's energy consumption. The proposed wake-up control mechanism is based on the RI-MAC protocol, which is one of the receiver-initiated MAC protocols. A receiver node in the proposed mechanism periodically wakes up and broadcasts a beacon signal based on the energy status of the node. A receiver node also adjusts wake-up period based on the traffics. Results have shown that the proposed MAC protocol outperformed RI-MAC protocol in the terms of energy consumption.

Minimum Energy-per-Bit Wireless Multi-Hop Networks with Spatial Reuse

  • Bae, Chang-Hun;Stark, Wayne E.
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.103-113
    • /
    • 2010
  • In this paper, a tradeoff between the total energy consumption-per-bit and the end-to-end rate under spatial reuse in wireless multi-hop network is developed and analyzed. The end-to-end rate of the network is the number of information bits transmitted (end-to-end) per channel use by any node in the network that is forwarding the data. In order to increase the bandwidth efficiency, spatial reuse is considered whereby simultaneous relay transmissions are allowed provided there is a minimum separation between such transmitters. The total energy consumption-per-bit includes the energy transmitted and the energy consumed by the receiver to process (demodulate and decoder) the received signal. The total energy consumption-per-bit is normalized by the distance between a source-destination pair in order to be consistent with a direct (single-hop) communication network. Lower bounds on this energy-bandwidth tradeoff are analyzed using convex optimization methods. For a given location of relays, it is shown that the total energy consumption-per-bit is minimized by optimally selecting the end-to-end rate. It is also demonstrated that spatial reuse can improve the bandwidth efficiency for a given total energy consumption-per-bit. However, at the rate that minimizes the total energy consumption-per-bit, spatial reuse does not provide lower energy consumption-per-bit compared to the case without spatial reuse. This is because spatial reuse requires more receiver energy consumption at a given end-to-end rate. Such degraded energy efficiency can be compensated by varying the minimum separation of hops between simultaneous transmitters. In the case of equi-spaced relays, analytical results for the energy-bandwidth tradeoff are provided and it is shown that the minimum energy consumption-per-bit decreases linearly with the end-to-end distance.

Traffic Asymmetry Balancing in OFDMA-TDD Cellular Networks

  • Foutekova, Ellina;Sinanovic, Sinan;Haas, Harald
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.137-147
    • /
    • 2008
  • This paper proposes a novel approach to interference avoidance via inter-cell relaying in cellular OFDMA-TDD (orthogonal frequency division multiple access - time division duplex) systems. The proposed scheme, termed asymmetry balancing, is targeted towards next-generation cellular wireless systems which are envisaged to have ad hoc and multi-hop capabilities. Asymmetry balancing resolves the detrimental base station (BS)-to-BS interference problem inherent to TDD networks by synchronizing the TDD switching points (SPs) across cells. In order to maintain the flexibility of TDD in serving the asymmetry demands of individual cells, inter-cell relaying is employed. Mobile stations (MSs) in a cell which has a shortage of uplink (UL) resources and spare downlink (DL) resources use free DL resources to off-load UL traffic to cooperating MSs in a neighboring cell using ad hoc communication. In an analogous fashion DL traffic can be balanced. The purpose of this paper is to introduce the asymmetry balancing concept by considering a seven-cell cluster and a single overloaded cell in the center. A mathematical model is developed to quantify the envisaged gains in using asymmetry balancing and is verified via Monte Carlo simulations. It is demonstrated that asymmetry balancing offers great flexibility in UL-DL resource allocation. In addition, results show that a spectral efficiency improvement of more than 100% can be obtained with respect to a case where the TDD SPs are adapted to the cell-specific demands.

Mixed Deployment Methods for Reinforcing Connectivity of Sensor Networks (센서네트워크 연결성 강화를 위한 거점 노드 혼합 배치 기법 연구)

  • Heo, Nojeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.169-174
    • /
    • 2014
  • Practical deployment methods for sensor nodes are demanding as applications using sensor nodes increase. In particular, node connectivity is crucial not only for the network longevity but also for direct impacts on sensing and data collection capability. Economic requirement at building sensor networks and often limited access for sensor fields due to hostile environment force to remain at random deployment from air. However, random deployment often result in lost connection problem and inefficient network topology issue due to node irregularity. In this paper, mixed deployment of key nodes that have better communication capability is proposed to support the original deployment into working in an efficient way. Node irregularity is improved by introducing mixed nodes and an efficient mixed node density is also analyzed. Simulation results show that the mixed deployment method has better performance than the existing deployment methods.