• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.03 seconds

Advanced Delay-based Reliable Data Transmission for Efficiency in Wireless Sensor Networks (무선 센서 네트워크에서 딜레이 기반의 에너지 효율적이며 신뢰성 있는 데이터 전송기법)

  • Shon, Min han;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.665-667
    • /
    • 2011
  • 최근에 에너지 효율적이며 신뢰성 있는 데이터 전송을 보장하기 위한 많은 라우팅 기법의 연구가 진행되고 있다. 하지만 현재까지 무선센서네트워크에서의 표준 라우팅 기법이 없는 상황에서 신뢰성을 제공하기 위한 새로운 라우팅 기법을 제안하는 것은 실용적이지 않으며 비효율적이다. 본 논문에서는 신뢰성 있는 데이터 전송을 범용적으로 보장하기 위해서 기존의 라우팅 기법의 신뢰성 및 확장성을 제공하는 모듈기법인 DRDT(Delay-based Reliable Data Transmission)를 향상시킨 ADRDT(Advenced Delay-based Reliable Data Transmission) 기법을 제안한다. ADRDT는 수신노드가 불안정한 링크상태로 인해 데이터 수신을 실패하는 경우 데이터를 오버히어링한 헬퍼노드(helper node)의 협력적인 재전송을 통해 신뢰성을 제공한다. 헬퍼노드는 수신노드의 이웃노드가 데이터를 오버히어링할 때 딜레이를 이용한 분산적 방법을 통해 동적으로 선정되며, 수신노드와의 링크상태를 고려하기 때문에 효과적으로 재전송 횟수를 감소시킨다. 제안 기법은 기존 기법과 비교해 전송 비용을 약 16.5% 감소시킨다.

Drowsy driving and seat belt detection using multiple deep learning networks (딥러닝 다중 네트워크를 이용한 졸음 운전감지 및 안전벨트 착용 여부 확인)

  • Rhyou, SeYeol;Yoo, JaeChern
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.01a
    • /
    • pp.75-77
    • /
    • 2021
  • 다양한 원인으로 매년 수많은 사람이 교통사고로 목숨을 잃거나 크게 다치곤 한다. 최근 교통사고 통계자료에 따르면 졸음운전으로 인한 교통사고가 음주운전이나, 과속보다도 높은 비중을 차지하고 있었다. 또한, 사고가 났을 때 안전벨트를 매지 않은 운전자나 동승객은 부상 정도가 훨씬 심각한 것으로 알려져 전 좌석에 안전벨트를 꼭 착용해야 하는 법도 제정되었다. 그런데도 많은 운전자 및 동승자가 안전벨트를 착용하지 않아 크게 부상을 당하는 사고는 줄지 않고 있다. 이러한 사고와 부상을 줄이기 위하여 본 논문에서는 다중 네트워크를 이용하여 운전자의 졸음 감지 및 운전자, 동승자의 안전벨트 착용 여부까지 실시간으로 판별하는 시스템을 설계하고 구현한다.

  • PDF

An Abnormal Breakpoint Data Positioning Method of Wireless Sensor Network Based on Signal Reconstruction

  • Zhijie Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.377-384
    • /
    • 2023
  • The existence of abnormal breakpoint data leads to poor channel balance in wireless sensor networks (WSN). To enhance the communication quality of WSNs, a method for positioning abnormal breakpoint data in WSNs on the basis of signal reconstruction is studied. The WSN signal is collected using compressed sensing theory; the common part of the associated data set is mined by exchanging common information among the cluster head nodes, and the independent parts are updated within each cluster head node. To solve the non-convergence problem in the distributed computing, the approximate term is introduced into the optimization objective function to make the sub-optimization problem strictly convex. And the decompressed sensing signal reconstruction problem is addressed by the alternating direction multiplier method to realize the distributed signal reconstruction of WSNs. Based on the reconstructed WSN signal, the abnormal breakpoint data is located according to the characteristic information of the cross-power spectrum. The proposed method can accurately acquire and reconstruct the signal, reduce the bit error rate during signal transmission, and enhance the communication quality of the experimental object.

Framework for Multimedia Service using Multicast in CVCN Network

  • Woo, Yoseop;Kim, Iksoo
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.9 no.2
    • /
    • pp.55-63
    • /
    • 2019
  • Vehicle communication networks have some deficient network resources to support a vast multimedia service including safety driving information, video, news and some broadcast relayed from the playgrounds such as professional baseball games for autonomous vehicles. This paper deals with the framework for providing seamless multimedia service including safety driving information using multicast in cooperated-connected vehicle communication network (CVCN). It adopts smart-switch (SS) and smart intelligent multicast agent(SIMA) to support the seamless multimedia service. The SS manages and switches multimedia streams through SIMA in CVCN network. The SIMA to operate as an access point, is composed of multicast supporting part and control part of mobile devices/autonomous vehicles in CVCN network. Therefore this proposed technique using SS and SIMA within CVCN network is a new framework for multimedia service that can disperse the load of server.

Indonesian Diplomacy in the Digital World

  • Wuryandari, Ganewati
    • SUVANNABHUMI
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2017
  • In the 21st century, the growing use of information and communication technologies (ICTs) and social media platforms has influenced our way of life, including international diplomacy. With the use of new interactive communication technologies such as WhatsApp, Twitter, Facebook, Instagram, video sharing website, blogs, and other social media networks, digital diplomacy has become an active diplomatic mode in modern society and plays an increasing important role in international relations. Although Indonesia has gradually realized the pivotal role of internet diplomacy and recently put it into practice, it is still lagging far behind. This paper will examine how Indonesia conducts its diplomacy in the new era of digital world. How far and in what ways does the Indonesian government make use of digital technology to conduct its diplomacy? What opportunities and challenges are confronted to develop digital diplomacy? How does it navigate diplomacy in the digital age? Unless Indonesia embraces new channels and methods of diplomacy, its foreign policy implementation may not run optimally to support its aim of attaining its objectives in the international stage.

  • PDF

Trend in eXplainable Machine Learning for Intelligent Self-organizing Networks (지능형 Self-Organizing Network를 위한 설명 가능한 기계학습 연구 동향)

  • D.S. Kwon;J.H. Na
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.95-106
    • /
    • 2023
  • As artificial intelligence has become commonplace in various fields, the transparency of AI in its development and implementation has become an important issue. In safety-critical areas, the eXplainable and/or understandable of artificial intelligence is being actively studied. On the other hand, machine learning have been applied to the intelligence of self-organizing network (SON), but transparency in this application has been neglected, despite the critical decision-makings in the operation of mobile communication systems. We describes concepts of eXplainable machine learning (ML), along with research trends, major issues, and research directions. After summarizing the ML research on SON, research directions are analyzed for explainable ML required in intelligent SON of beyond 5G and 6G communication.

Attack Detection on Images Based on DCT-Based Features

  • Nirin Thanirat;Sudsanguan Ngamsuriyaroj
    • Asia pacific journal of information systems
    • /
    • v.31 no.3
    • /
    • pp.335-357
    • /
    • 2021
  • As reproduction of images can be done with ease, copy detection has increasingly become important. In the duplication process, image modifications are likely to occur and some alterations are deliberate and can be viewed as attacks. A wide range of copy detection techniques has been proposed. In our study, content-based copy detection, which basically applies DCT-based features for images, namely, pixel values, edges, texture information and frequency-domain component distribution, is employed. Experiments are carried out to evaluate robustness and sensitivity of DCT-based features from attacks. As different types of DCT-based features hold different pieces of information, how features and attacks are related can be shown in their robustness and sensitivity. Rather than searching for proper features, use of robustness and sensitivity is proposed here to realize how the attacked features have changed when an image attack occurs. The experiments show that, out of ten attacks, the neural networks are able to detect seven attacks namely, Gaussian noise, S&P noise, Gamma correction (high), blurring, resizing (big), compression and rotation with mostly related to their sensitive features.

Transforming Patient Health Management: Insights from Explainable AI and Network Science Integration

  • Mi-Hwa Song
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.307-313
    • /
    • 2024
  • This study explores the integration of Explainable Artificial Intelligence (XAI) and network science in healthcare, focusing on enhancing healthcare data interpretation and improving diagnostic and treatment methods. Key methodologies like Graph Neural Networks, Community Detection, Overlapping Network Models, and Time-Series Network Analysis are examined in depth for their potential in patient health management. The research highlights the transformative role of XAI in making complex AI models transparent and interpretable, essential for accurate, data-driven decision-making in healthcare. Case studies demonstrate the practical application of these methodologies in predicting diseases, understanding drug interactions, and tracking patient health over time. The study concludes with the immense promise of these advancements in healthcare, despite existing challenges, and underscores the need for ongoing research to fully realize the potential of AI in this field.

Development of Energy-sensitive Cluster Formation and Cluster Head Selection Technique for Large and Randomly Deployed WSNs

  • Sagun Subedi;Sang Il Lee
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.1-6
    • /
    • 2024
  • Energy efficiency in wireless sensor networks (WSNs) is a critical issue because batteries are used for operation and communication. In terms of scalability, energy efficiency, data integration, and resilience, WSN-cluster-based routing algorithms often outperform routing algorithms without clustering. Low-energy adaptive clustering hierarchy (LEACH) is a cluster-based routing protocol with a high transmission efficiency to the base station. In this paper, we propose an energy consumption model for LEACH and compare it with the existing LEACH, advanced LEACH (ALEACH), and power-efficient gathering in sensor information systems (PEGASIS) algorithms in terms of network lifetime. The energy consumption model comprises energy-sensitive cluster formation and a cluster head selection technique. The setup and steady-state phases of the proposed model are discussed based on the cluster head selection. The simulation results demonstrated that a low-energy-consumption network was introduced, modeled, and validated for LEACH.

Multi-Agent Deep Reinforcement Learning for Fighting Game: A Comparative Study of PPO and A2C

  • Yoshua Kaleb Purwanto;Dae-Ki Kang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.192-198
    • /
    • 2024
  • This paper investigates the application of multi-agent deep reinforcement learning in the fighting game Samurai Shodown using Proximal Policy Optimization (PPO) and Advantage Actor-Critic (A2C) algorithms. Initially, agents are trained separately for 200,000 timesteps using Convolutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) with LSTM networks. PPO demonstrates superior performance early on with stable policy updates, while A2C shows better adaptation and higher rewards over extended training periods, culminating in A2C outperforming PPO after 1,000,000 timesteps. These findings highlight PPO's effectiveness for short-term training and A2C's advantages in long-term learning scenarios, emphasizing the importance of algorithm selection based on training duration and task complexity. The code can be found in this link https://github.com/Lexer04/Samurai-Shodown-with-Reinforcement-Learning-PPO.