• Title/Summary/Keyword: communication networks

Search Result 5,470, Processing Time 0.032 seconds

A Hierarchical Data Dissemination Protocol in Large-Scale Wireless Sensor Networks (대규모 무선 센서 네트워크에서 계층적 데이터 전달 프로토콜)

  • Chu, Seong-Eun;Kang, Dae-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.8
    • /
    • pp.1505-1510
    • /
    • 2008
  • In large-scale wireless sensor networks, the deployed nodes cannot be replaced or recharged after first deployment. Also, dead nodes maγ lead to the partition of whole networks. While performing data dissemination under a battery power constraint, energy efficiency is a key design factor of routing protocol. As a solution for the efficient data dissemination, in this paper, we propose a protocol namely Hierarchical Data Dissemination (HDD) which provides scalable and efficient data delivery to multiple sources and mobile sinks. HDD uses the facts that sink nodes are central gathering Points and source-centric data forwarding paths are constructed and it is maintained with two-tier communications. The performance of HDD is compared with TTDD about the energy consumption, data delivery time and data success ration. The extensive simulation results show that HDD Routing Protocol outperforms TIDD by more than $1.5{\sim}3times$ on energy consumption.

An Enhanced Routing Protocol for Supporting Node Mobility in Multi-hop Ad-hoc Networks (다중 홉 Ad-hoc 네트워크에서 노드이동성을 고려한 라우팅 프로토콜에 관한 연구)

  • Kim, Kwan-Woong;Kim, Byun-Gon;Kim, Yong-Kab
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1665-1671
    • /
    • 2007
  • Mobile Ad hoc Networks (MANETs) refer to autonomous networks in which wireless data communications are established between multiple nodes in a given coverage area without a base station or centralized administration. Because of node mobility and limited battery life, the network topology may changes frequently. Selecting the most reliable path during route discovery process is important to improve performance in ad-hoc networks. In this study, we proposed an enhanced routing protocol based on AODV by monitoring variation of receiving signal strength. New metric function that consists of node mobility and hops of path is used for routing decision. From extensive experiments by using NS-2, The performance of the proposed routing scheme has been imp개ved by comparison to AODV protocol.

A Scheme to Reduce the Transmission Delay for Real-Time Applications in Sensor Networks (센서 네트워크에서 실시간 응용을 위한 전송 지연 개선 기법)

  • Bin, Bong-Uk;Lee, Jong-Hyup
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.8
    • /
    • pp.1493-1499
    • /
    • 2007
  • Real-time applications in a wireless sensor network environment require real-time transmissions from sensing nodes to sink nodes. Existing congestion control mechanisms have treated congestion problems in sensor networks, but they only adjust the reporting frequency or the sending rate in intermediate nodes. They were not suitable for real-time applications from the transmission delays point of view. In this paper, we suggest a new mechanism that can reduce the transmission delay and can increase the throughput for real-time applications in sensor network. This mechanism classifies data on the real-time characteristics, processes the data maintaining the real-time characteristics prior to the other data such as the non real-time data or the data lost the real-time characteristics. A modified frame format is also proposed in order to apply the mechanism to IEEE 802.15.4 MAC layer. The simulation based on ns-2 is accomplished in order to verify the performance of the suggested scheme from transmission delay and throughput standpoints. The simulation results show that the proposed algorithm has a better performance specifically when It applies to the real-time applications in sensor networks.

Concrete structural health monitoring using piezoceramic-based wireless sensor networks

  • Li, Peng;Gu, Haichang;Song, Gangbing;Zheng, Rong;Mo, Y.L.
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.731-748
    • /
    • 2010
  • Impact detection and health monitoring are very important tasks for civil infrastructures, such as bridges. Piezoceramic based transducers are widely researched for these tasks due to the piezoceramic material's inherent advantages of dual sensing and actuation ability, which enables the active sensing method for structural health monitoring with a network of piezoceramic transducers. Wireless sensor networks, which are easy for deployment, have great potential in health monitoring systems for large civil infrastructures to identify early-age damages. However, most commercial wireless sensor networks are general purpose and may not be optimized for a network of piezoceramic based transducers. Wireless networks of piezoceramic transducers for active sensing have special requirements, such as relatively high sampling rate (at a few-thousand Hz), incorporation of an amplifier for the piezoceramic element for actuation, and low energy consumption for actuation. In this paper, a wireless network is specially designed for piezoceramic transducers to implement impact detection and active sensing for structural health monitoring. A power efficient embedded system is designed to form the wireless sensor network that is capable of high sampling rate. A 32 bit RISC wireless microcontroller is chosen as the main processor. Detailed design of the hardware system and software system of the wireless sensor network is presented in this paper. To verify the functionality of the wireless sensor network, it is deployed on a two-story concrete frame with embedded piezoceramic transducers, and the active sensing property of piezoceramic material is used to detect the damage in the structure. Experimental results show that the wireless sensor network can effectively implement active sensing and impact detection with high sampling rate while maintaining low power consumption by performing offline data processing and minimizing wireless communication.

Development of a Simulator for RBF-Based Networks on Neuromorphic Chips (뉴로모픽 칩에서 운영되는 RBF 기반 네트워크 학습을 위한 시뮬레이터 개발)

  • Lee, Yeowool;Seo, Keyongeun;Choi, Daewoong;Ko, Jaejin;Lee, Sangyub;Lee, Jaekyu;Cho, Heyonjoong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.11
    • /
    • pp.251-262
    • /
    • 2019
  • In this paper, we propose a simulator that provides various algorithms of RBF networks on neuromorphic chips. To develop algorithms based on neuromorphic chips, the disadvantages of using simulators are that it is difficult to test various types of algorithms, although time is fast. This proposed simulator can simulate four times more types of network architecture than existing simulators, and it provides an additional a two-layer structure algorithm in particular, unlike RBF networks provided by existing simulators. This two-layer architecture algorithm is configured to be utilized for multiple input data and compared to the existing RBF for performance analysis and validation of utilization. The analysis showed that the two-layer structure algorithm was more accurate than the existing RBF networks.

Power Allocation and Mode Selection in Unmanned Aerial Vehicle Relay Based Wireless Networks

  • Zeng, Qian;Huangfu, Wei;Liu, Tong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.711-732
    • /
    • 2019
  • Many unmanned aerial vehicle (UAV) applications have been employed for performing data collection in facilitating tasks such as surveillance and monitoring objectives in remote and dangerous environments. In light of the fact that most of the existing UAV relaying applications operate in conventional half-duplex (HD) mode, a full-duplex (FD) based UAV relay aided wireless network is investigated, in which the UAV relay helps forwarding information from the source (S) node to the destination (D). Since the activated UAV relays are always floating and flying in the air, its channel state information (CSI) as well as channel capacity is a time-variant parameter. Considering decode-and-forward (DF) relaying protocol in UAV relays, the cooperative relaying channel capacity is constrained by the relatively weaker one (i.e. in terms of signal-to-noise ratio (SNR) or signal-to-interference-plus-noise ratio (SINR)) between S-to-relay and relay-to-D links. The channel capacity can be optimized by adaptively optimizing the transmit power of S and/or UAV relay. Furthermore, a hybrid HD/FD mode is enabled in the proposed UAV relays for adaptively optimizing the channel utilization subject to the instantaneous CSI and/or remaining self-interference (SI) levels. Numerical results show that the channel capacity of the proposed UAV relay aided wireless networks can be maximized by adaptively responding to the influence of various real-time factors.

Modified Back-Off Algorithm to Improve Fairness for Slotted ALOHA Sensor Networks (슬롯화된 ALOHA 센서 네트워크에서 공평성 향상을 위한 변형된 백오프 알고리즘)

  • Lee, Jong-Kwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.5
    • /
    • pp.581-588
    • /
    • 2019
  • In this paper, I propose an modified back-off algorithm to improve the fairness for slotted ALOHA sensor networks. In hierarchical networks, the performance degradation of a specific node can cause degradation of the overall network performance in case the data transmitted by lower nodes is needed to be synthesized and processed by an upper node. Therefore it is important to ensure the fairness of transmission performance to all nodes. The proposed scheme choose a back-off time of a node considering the previous transmission results as well as the current transmission result. Moreover a node that failed to transmit consecutively is given gradually shorter back-off time but a node that is success to transmit consecutively is given gradually longer back-off time. Through simulations, I compare and analyze the performance of the proposed scheme with the binary exponential back-off algorithm(BEB). The results show that the proposed scheme reduces the throughput slightly compared to BEB but improves the fairness significantly.

Optimization Algorithm for Energy-aware Routing in Networks with Bundled Links (번들 링크를 가진 네트워크에서 에너지 인식 라우팅을 위한 최적화 알고리즘)

  • Jang, Kil-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.4
    • /
    • pp.572-580
    • /
    • 2021
  • In order to reduce transmission delay and increase reliability in networks, mainly high-performance and high-power network equipment is used to guarantee network quality. In this paper, we propose an optimization algorithm to minimize the energy consumed when transmitting traffic in networks with a bundle link composed of multiple physical cables. The proposed optimization algorithm is a meta-heuristic method, which uses tabu search algorithm. In addition, it is designed to minimize transmission energy by minimizing the cables on the paths of the source and destination nodes for each traffic. In the proposed optimization algorithm, performance evaluation was performed in terms of the number of cables used in the transmission and the link utilization for all traffic on networks, and the performance evaluation result confirmed the superior performance than the previously proposed method.

Learning-Backoff based Wireless Channel Access for Tactical Airborne Networks (차세대 공중전술네트워크를 위한 Learning-Backoff 기반 무선 채널 접속 방법)

  • Byun, JungHun;Park, Sangjun;Yoon, Joonhyeok;Kim, Yongchul;Lee, Wonwoo;Jo, Ohyun;Joo, Taehwan
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.12-19
    • /
    • 2021
  • For strengthening the national defense, the function of tactical network is essential. tactics and strategies in wartime situations are based on numerous information. Therefore, various reconnaissance devices and resources are used to collect a huge amount of information, and they transmit the information through tactical networks. In tactical networks that which use contention based channel access scheme, high-speed nodes such as recon aircraft may have performance degradation problems due to unnecessary channel occupation. In this paper, we propose a learning-backoff method, which empirically learns the size of the contention window to determine channel access time. The proposed method shows that the network throughput can be increased up to 25% as the number of high-speed mobility nodes are increases.

A Tabu Search Algorithm for Network Design Problem in Wireless Mesh Networks (무선 메쉬 네트워크에서 네트워크 설계 문제를 위한 타부 서치 알고리즘)

  • Jang, Kil-woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.778-785
    • /
    • 2020
  • Wireless mesh networks consist of mesh clients, mesh routers and mesh access points. The mesh router connects wireless network services to the mesh client, and the mesh access point connects to the backbone network using a wired link and provides Internet access to the mesh client. In this paper, a limited number of mesh routers and mesh access points are used to propose optimization algorithms for network design for wireless mesh networks. The optimization algorithm in this paper has been applied with a sub-subscription algorithm, which is one of the meta-heuristic methods, and is designed to minimize the transmission delay for the placement of mesh routers and mesh access points, and produce optimal results within a reasonable time. The proposed algorithm was evaluated in terms of transmission delay and time to perform the algorithm for the placement of mesh routers and mesh access points, and the performance evaluation results showed superior performance compared to the previous meta-heuristic methods.