Artificial intelligence in the game is mainly used to determine patterns of behavior of NPC (Non Player Character) and the enemy, path finding. These artificial intelligence is implemented by FSM (Finite State Machine) or Flocking method. The number of NPC behavior in FSM method is limited by the number of FSM states. If the number of states is too small, then NPC player can know the behavior patterns easily. On the other hand, too many implementation cases make it complicated. The NPC behaviors in Flocking method are determined by the leader's decision. Therefore, players can know easily direction of movement patterns or attack pattern of NPCs. To overcome these problem, this paper proposes agonistic behaviors(attacks, threats, showing courtesy, avoidance, submission)in animals to apply for the NPC, and implements agonistic behaviors using Unity3D engine. This paper can help developing a real sense of the NPC artificial intelligence.
Journal of the Korean Society for information Management
/
v.25
no.4
/
pp.25-42
/
2008
The research was conducted to investigate factors that facilitate users' finding books by analyzing classifications in public library and bookstore. This research was based on the assumption that the users' needs and information behaviors are similar in both public library and bookstore. The main purpose of this study is not to recommend classifying public library collections the way a bookstore does, but to figure out what makes the users' book finding more convenient by analyzing the classifications. To carry out the research, users' book finding in public library and classifications of public library and bookstore are analyzed. Then, a survey was conducted to investigate users' book finding behaviors, degree of convenience in finding books according to different classifications and the causes of the convenience. The results of the research showed that bookstore's classification was more convenient for the users in finding books.
Journal of the Korea Society of Computer and Information
/
v.18
no.3
/
pp.35-45
/
2013
MANET has a weak point because it allows access from not only legal nodes but also illegal nodes. Most of the MANET researches had been focused on attack on routing path or packet forwarding. Nevertheless, there are insuffcient studies on a comprehensive approach to detect various attacks on malicious nodes at packet forwarding processes. In this paper, we propose a technique, named DTecBC (detection technique of malicious node behaviors based on collaboration), which can handle more effciently various types of malicious node attacks on MANET environment. The DTecBC is designed to detect malicious nodes by communication between neighboring nodes, and manage malicious nodes using a maintain table. OPNET tool was used to compare with Watchdog, CONFIDANT, SRRPPnT for verifying effectiveness of our approach. As a result, DTecBC detects various behaviors of malicious nodes more effectively than other techniques.
The Q-learning algorithm based on reinforcement learning is useful for learning the goal for one behavior at a time, using a combination of discrete states and actions. In order to learn multiple actions, applying a behavior-based architecture and using an appropriate behavior adjustment method can make a robot perform fast and reliable actions. Q-learning is a popular reinforcement learning method, and is used much for robot learning for its characteristics which are simple, convergent and little affected by the training environment (off-policy). In this paper, Q-learning algorithm is applied to a lamp robot to learn multiple behaviors (human recognition, desk object recognition). As the learning rate of Q-learning may affect the performance of the robot at the learning stage of multiple behaviors, we present the optimal multiple behaviors learning model by changing learning rate.
Journal of the Korean Society for Library and Information Science
/
v.56
no.2
/
pp.57-82
/
2022
Today, despite the increase in professional knowledge-related information needs of citizens, the expansion of citizen participatory research in academia, and the provision of information services for the professional knowledge, there are still difficulties in access to scholarly information resources by laypeople. Focusing on this problem, this study investigates laypeople's scholarly information needs and behaviors through a questionnaire survey. By examining the search and use behaviors of scholarly information resources, and the perception of the need to support the utilization of them, this study analyzes the degree and pattern of social sharing of scholarly information resources beyond the scholarly community. This study is significant in that it expands the range of users in traditional scholarly communication and emphasizes the need to support them to access and use scholarly information resources.
Putri Winda Lestari;Lina Agestika;Gusti Kumala Dewi
Journal of Preventive Medicine and Public Health
/
v.56
no.1
/
pp.21-30
/
2023
Objectives: To prevent the spread of coronavirus disease 2019 (COVID-19), behaviors such as mask-wearing, social distancing, decreasing mobility, and avoiding crowds have been suggested, especially in high-risk countries such as Indonesia. Unfortunately, the level of compliance with those practices has been low. This study was conducted to determine the predisposing, enabling, and reinforcing factors of COVID-19 prevention behavior in Indonesia. Methods: This cross-sectional study used a mixed-methods approach. The participants were 264 adults from 21 provinces in Indonesia recruited through convenience sampling. Data were collected using a Google Form and in-depth interviews. Statistical analysis included univariate, bivariate, and multivariate logistic regression. Furthermore, qualitative data analysis was done through content analysis and qualitative data management using Atlas.ti software. Results: Overall, 44.32% of respondents were non-compliant with recommended COVID-19 prevention behaviors. In multivariate logistic regression analysis, low-to-medium education level, poor attitude, insufficient involvement of leaders, and insufficient regulation were also associated with decreased community compliance. Based on in-depth interviews with informants, the negligence of the Indonesian government in the initial stages of the COVID-19 pandemic may have contributed to the unpreparedness of the community to face the pandemic, as people were not aware of the importance of preventive practices. Conclusions: Education level is not the only factor influencing community compliance with recommended COVID-19 prevention behaviors. Changing attitudes through health promotion to increase public awareness and encouraging voluntary community participation through active risk communication are necessary. Regulations and role leaders are also required to improve COVID-19 prevention behavior.
Journal of the Korean BIBLIA Society for library and Information Science
/
v.33
no.1
/
pp.259-277
/
2022
This study aims to understand international students' web search behaviors. During the experiment, fifteen international students were asked to conduct three search tasks which includes six search questions. Depending on the characteristics of search task, there were differences in search performance and search behavior. It was commonly found that participants with higher Korean fluency showed higher search performance; however, prior knowledge about the search topic did not always affect the search performance. In the search tasks that required navigation through menus and links within one web domain, participants often overlooked the correct answers, even if they were at the webpages containing the correct answer. Also, some participants did not realized that they found wrong answers. For enhancing information seeking behaviors among foreigners in Korea, the followings were suggested: 1) to design websites which are easy for non-native speakers to navigate, and 2) to use social media as a means of interactive communication.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.10
/
pp.3378-3393
/
2014
We have witnessed the rapid development of information technology in recent years. One of the key phenomena is the fast, near-exponential increase of data. Consequently, most of the traditional data classification methods fail to meet the dynamic and real-time demands of today's data processing and analyzing needs--especially for continuous data streams. This paper proposes an improved incremental learning algorithm for a large-scale data stream, which is based on SVM (Support Vector Machine) and is named DS-IILS. The DS-IILS takes the load condition of the entire system and the node performance into consideration to improve efficiency. The threshold of the distance to the optimal separating hyperplane is given in the DS-IILS algorithm. The samples of the history sample set and the incremental sample set that are within the scope of the threshold are all reserved. These reserved samples are treated as the training sample set. To design a more accurate classifier, the effects of the data volumes of the history sample set and the incremental sample set are handled by weighted processing. Finally, the algorithm is implemented in a cloud computing system and is applied to study user behaviors. The results of the experiment are provided and compared with other incremental learning algorithms. The results show that the DS-IILS can improve training efficiency and guarantee relatively high classification accuracy at the same time, which is consistent with the theoretical analysis.
The aims of this study was to verify the validity using group comparison method and test/retest reliability of the Communication Behavior Scale for Nurses Caring for People with Dementia(CBS-D). The subjects were nurses who have worked at elderly care facilities in D, U and Y cities(n = 67), and nurses who have worked at general hospitals in D and U cities. The scores of the communication behaviors of nurses working in elderly care facilities were significantly higher than those of nurses working in general hospitals(t=2.49, p=.014). The Intraclass Correlation Coefficients for the test-retest reliability test was .813. Therefore, it was confirmed that CBS-D is an appropriate evaluation tool for evaluating the level of the nurse's communication behavior through various logical analyzes, and it is expected that it can be used in various ways for nursing care for people with dementia.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.1
/
pp.264-284
/
2021
As the next-generation network architecture, software-defined networking (SDN) has great potential. But how to forward data packets safely is a big challenge today. In SDN, packets are transferred according to flow rules which are made and delivered by the controller. Once flow rules are modified, the packets might be redirected or dropped. According to related research, we believe that the key to forward data flows safely is keeping the consistency of flow rules. However, existing solutions place little emphasis on the safety of flow rules. After summarizing the shortcomings of the existing solutions, we propose FRChain to ensure the security of SDN data forwarding. FRChain is a novel scheme that uses blockchain to secure flow rules in SDN and to detect compromised nodes in the network when the proportion of malicious nodes is less than one-third. The scheme places the flow strategies into blockchain in form of transactions. Once an unmatched flow rule is detected, the system will issue the problem by initiating a vote and possible attacks will be deduced based on the results. To simulate the scheme, we utilize BigchainDB, which has good performance in data processing, to handle transactions. The experimental results show that the scheme is feasible, and the additional overhead for network performance and system performance is less than similar solutions. Overall, FRChain can detect suspicious behaviors and deduce malicious nodes to keep the consistency of flow rules in SDN.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.