• Title/Summary/Keyword: common subexpression sharing

Search Result 2, Processing Time 0.013 seconds

Low-power/high-speed DCT structure using common sub-expression sharing (Common sub-expression sharing을 이용한 고속/저전력 DCT 구조)

  • Jang, Young-Beom;Yang, Se-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1C
    • /
    • pp.119-128
    • /
    • 2004
  • In this paper, a low-power 8-point DCT structure is proposed using add and shift operations. Proposed structure adopts 4 cycles for complete 8-point DCT in order to minimize size of hardware and to enable high-speed processing. In the structure, hardware for the first cycle can be shared in the next 3 cycles since all columns in the DCT coefficient matrix are common except sign. Conventional DCT structures implemented with only add and shift operation use CSD(Canonic Signed Digit) form coefficients to reduce the number of adders. To reduce the number of adders further, we propose a new structure using common sub-expression sharing techniques. With this techniques, the proposed 8-point DCT structure achieves 19.5% adder reduction comparison to the conventional structure using only CSD coefficient form.

A low-power systolic structure for MP3 IMDCT Using addition and shift operation (덧셈과 쉬프트 연산을 사용한 MP3 IMDCT의 저전력 Systolic 구조)

  • Jang Young Beom;Lee Won Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1451-1459
    • /
    • 2004
  • In this paper, a low-power 32-point IMDCT structure is proposed for MP3. Through re-odering of IMDCT matrices, we propose the systolic structure operating with 16, 8, 4, 2, and 1 cycle, respectively. To reduce power consumption, multiplication of each sub blocks are implemented by add and shift operation with CSD(Canrmic sigled digit) form coefficients. To reduce, furthermore, the number of adders, we utilize the common sub-expression sharing techniques. With these techniques, the relative power consumption of the proposed structure is reduced by 58.4% comparison to the conventional structure using only 2's complement form coefficient. Validity of the proposed structure is proved through Verilog-HDL coding.