• Title/Summary/Keyword: common genes

Search Result 700, Processing Time 0.029 seconds

Simple Statistical Tools to Detect Signals of Recent Polygenic Selection

  • Piffer, Davide
    • Interdisciplinary Bio Central
    • /
    • v.6 no.1
    • /
    • pp.1.1-1.6
    • /
    • 2014
  • A growing body of evidence shows that most psychological traits are polygenic, that is they involve the action of many genes with small effects. However, the study of selection has disproportionately been on one or a few genes and their associated sweep signals (rapid and large changes in frequency). If our goal is to study the evolution of psychological variables, such as intelligence, we need a model that explains the evolution of phenotypes governed by many common genetic variants. This study illustrates simple statistical tools to detect signals of recent polygenic selection: a) ANOVA can be used to reveal significant deviation from random distribution of allele frequencies across racial groups. b) Principal component analysis can be used as a tool for finding a factor that represents the strength of recent selection on a phenotype and the underlying genetic variation. c) Method of correlated vectors: the correlation between genetic frequencies and the average phenotypes of different populations is computed; then, the resulting correlation coefficients are correlated with the corresponding alleles' genome-wide significance. This provides a measure of how selection acted on genes with higher signal to noise ratio. Another related test is that alleles with large frequency differences between populations should have a higher genome-wide significance value than alleles with small frequency differences. This paper fruitfully employs these tools and shows that common genetic variants exhibit subtle frequency shifts and that these shifts predict phenotypic differences across populations.

Cloning of Rod Opsin Genes Isolated from Olive Flounder Paralichthys olivaceus, Japanese Eel Anguilla japonica, and Common Carp Cyprinus carpio

  • Kim, Sung-Wan;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.265-275
    • /
    • 2009
  • G Protein-coupled receptors (GPCRs) mediating wide ranges of physiological responses is one of the most attractive targets for drug development. Rhodopsin, a dim-light photoreceptor, has been extensively used as a model system for structural and functional study of GPCRs. Fish have rhodopsin finely-tuned to their habitats where the intensity and the wavelength of lights are changed depending on its water-depth. To study the detailed molecular characteristics of GPCR architecture and to understand the fishery light-sensing system, genes encoding rod opsins were isolated from fishes living under different photic environments. Full-length rod opsin genes were obtained by combination of PCR amplification and DNA walking strategy of genomic DNA isolated from olive flounder, P. olivaceus, Japanese eel, A. japonica, and Common carp C. carpio. Deduced amino acid sequences showed a typical feature of rod opsins including the sites for Schiffs base formation (Lys296) and its counter ion (Glu113), disulfide formation (Cys110 and Cys187), and palmitoylation (Cys322 and Cys323) although Cys322 is replaced by Phe in Japanese eel. Comparison of opsins by amino acid sequence alignment indicated the closest similarity between P. olivaceus and H. hippoglossus (94%), A. japonica and A. anguilla (98%), and C. carpio and C. auratus (95%), respectively.

Genetic Background of Congenital Hearing Loss (선천성 난청의 유전적 배경)

  • Oh, Seung-Ha;Song, Jae-Jin
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.8-24
    • /
    • 2009
  • Understanding the genetic background of hearing loss is important since almost 50% of the cases of profound hearing loss are caused by genetic factors. Until now, more than 150 causative genes have been identified. In this review, classification of genetic hearing loss (syndromic versus non-syndromic, recessive versus dominant, X-linked and mitochondrial), pitfalls in elucidating causative genes, anatomy of the inner ear, introduction of the most common syndromic hearing loss, introduction of the most common non-syndromic hearing loss-causing genes, mitochondrial and multifactorial hearing losses were discussed. Moreover, clinical approaches to the patients with hereditary hearing loss and genetic counseling were also explained briefly. Finally, future directions of the hereditary hearing loss research in Korean population were presented.

  • PDF

The Ribostamycin Biosynthetic Gene Cluster in Streptomyces ribosidificus: Comparison with Butirosin Biosynthesis

  • Subba, Bimala;Kharel, Madan Kumar;Lee, Hei Chan;Liou, Kwangkyoung;Kim, Byung-Gee;Sohng, Jae Kyung
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.90-96
    • /
    • 2005
  • A cluster of genes for ribostamycin (Rbm) biosynthesis was isolated from Streptomyces ribosidificus ATCC 21294. Sequencing of 31.892 kb of the genomic DNA of S. ribosidificus revealed 26 open reading frames (ORFs) encoding putative Rbm biosynthetic genes as well as resistance and other genes. One of ten putative Rbm biosynthetic genes, rbmA, was expressed in S. lividans TK24, and shown to encode 2-deoxy-scyllo-inosose (DOI) synthase. Acetylation of various aminoglycoside-aminocyclitol (AmAcs) by RbmI confirmed it to be an aminoglycoside 3-N-acetyltransferase. Comparison of the genetic control of ribostamycin and butirosin biosynthesis pointed to a common biosynthetic route for these compounds, despite the considerable differences between them in genetic organization.

Gene-set based genome-wide association analysis for the speed of sound in two skeletal sites of Korean women

  • Kwon, Ji-Sun;Kim, Sangsoo
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.348-353
    • /
    • 2014
  • The speed of sound (SOS) value is an indicator of bone mineral density (BMD). Previous genome-wide association (GWA) studies have identified a number of genes, whose variations may affect BMD levels. However, their biological implications have been elusive. We re-analyzed the GWA study dataset for the SOS values in skeletal sites of 4,659 Korean women, using a gene-set analysis software, GSA-SNP. We identified 10 common representative GO terms, and 17 candidate genes between these two traits (PGS < 0.05). Implication of these GO terms and genes in the bone mechanism is well supported by the literature survey. Interestingly, the significance levels of some member genes were inversely related, in several gene-sets that were shared between two skeletal sites. This implies that biological process, rather than SNP or gene, is the substantial unit of genetic association for SOS in bone. In conclusion, our findings may provide new insights into the biological mechanisms for BMD.

Analysis of the global gene expression profiles in genomic instability-induced cervical cancer cells

  • Oh, Jung-Min
    • International Journal of Oral Biology
    • /
    • v.47 no.2
    • /
    • pp.17-24
    • /
    • 2022
  • Preserving intact genetic material and delivering it to the next generation are the most significant tasks of living organisms. The integrity of DNA sequences is under constant threat from endogenous and exogenous factors. The accumulation of damaged or incompletely-repaired DNA can cause serious problems in cells, including cell death or cancer development. Various DNA damage detection systems and repair mechanisms have evolved at the cellular level. Although the mechanisms of these responses have been extensively studied, the global RNA expression profiles associated with genomic instability are not well-known. To detect global gene expression changes under different DNA damage and hypoxic conditions, we performed RNA-seq after treating human cervical cancer cells with ionizing radiation (IR), hydroxyurea, mitomycin C (MMC), or 1% O2 (hypoxia). Results showed that the expression of 184-1037 genes was altered by each stimulus. We found that the expression of 51 genes changed under IR, MMC, and hypoxia. These findings revealed damage-specific genes that varied differently according to each stimulus and common genes that are universally altered in genetic instability.

Increased Gene Expression in Cultured BEAS-2B Cells Treated with Metal Oxide Nanoparticles

  • Park, Eun-Jung;Park, Kwang-Sik
    • Toxicological Research
    • /
    • v.25 no.4
    • /
    • pp.195-201
    • /
    • 2009
  • Recent publications showed that metal nanoparticles which are made from $TiO_2,\;CeO_2,\;Al_2O_3,\;CuCl_2,\;AgNO_3$ and $ZnO_2$ induced oxidative stress and pro-inflammatory effects in cultured cells and the responses seemed to be common toxic pathway of metal nanoparticles to the ultimate toxicity in animals as well as cellular level. In this study, we compared the gene expression induced by two different types of metal oxide nanoparticles, titanium dioxide nanoparticles (TNP) and cerium dioxide nanoparticles (CNP) using microarray analysis. About 50 genes including interleukin 6, interleukin 1, platelet-derived growth factor $\beta$, and leukemia inhibitory factor were induced in cultured BEAS2B cells treated with TNP 40 ppm. When we compared the induction levels of genes in TNP-treated cells to those in CNP-treated cells, the induction levels were very correlated in various gene categories (r=0.645). This may suggest a possible common toxic mechanism of metal oxide nanoparticles.

Hereditary Genes and SNPs Associated with Breast Cancer

  • Mahdi, Kooshyar Mohammad;Nassiri, Mohammad Reza;Nasiri, Khadijeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3403-3409
    • /
    • 2013
  • Breast cancer is the most common cancer among women affecting up to one third of tehm during their lifespans. Increased expression of some genes due to polymorphisms increases the risk of breast cancer incidence. Since mutations that are recognized to increase breast cancer risk within families are quite rare, identification of these SNPs is very important. The most important loci which include mutations are; BRCA1, BRCA2, PTEN, ATM, TP53, CHEK2, PPM1D, CDH1, MLH1, MRE11, MSH2, MSH6, MUTYH, NBN, PMS1, PMS2, BRIP1, RAD50, RAD51C, STK11 and BARD1. Presence of SNPs in these genes increases the risk of breast cancer and associated diagnostic markers are among the most reliable for assessing prognosis of breast cancer. In this article we reviewed the hereditary genes of breast cancer and SNPs associated with increasing the risk of breast cancer that were recently were reported from candidate gene, meta-analysis and GWAS studies. SNPs of genes associated with breast cancer can be used as a potential tool for improving cancer diagnosis and treatment planning.

Statistical Method of Ranking Candidate Genes for the Biomarker

  • Kim, Byung-Soo;Kim, In-Young;Lee, Sun-Ho;Rha, Sun-Young
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.1
    • /
    • pp.169-182
    • /
    • 2007
  • Receive operating characteristic (ROC) approach can be employed to rank candidate genes from a microarray experiment, in particular, for the biomarker development with the purpose of population screening of a cancer. In the cancer microarray experiment based on n patients the researcher often wants to compare the tumor tissue with the normal tissue within the same individual using a common reference RNA. Ideally, this experiment produces n pairs of microarray data. However, it is often the case that there are missing values either in the normal or tumor tissue data. Practically, we have $n_1$ pairs of complete observations, $n_2$ "normal only" and $n_3$ "tumor only" data for the microarray. We refer to this data set as a mixed data set. We develop a ROC approach on the mixed data set to rank candidate genes for the biomarker development for the colorectal cancer screening. It turns out that the correlation between two ranks in terms of ROC and t statistics based on the top 50 genes of ROC rank is less than 0.6. This result indicates that employing a right approach of ranking candidate genes for the biomarker development is important for the allocation of resources.

Nrf2 Knockout Mice that Lack Control of Drug Metabolizing and Antioxidant Enzyme Genes - Animals Highly Sensitive to Xenobiotic Toxicity

  • Enomoto, Akiko;Itoh, Ken;Harada, Takanori;Yamamoto, Masayuki
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.299-304
    • /
    • 2001
  • Xenobiotics and their reactive intermediates bind to cellular macromolecules and/or generate oxidative stress. which provoke deleterious effects on the cell function. Induction of xenobiotic-biotrans-forming enzymes and antioxidant molecules is an important defense mechanism against such insults. A group of genes involved in the defense mechanism. e.g. genes encoding glutathione S-transferases. NAD(P)H: quinone oxidoreductase, UDP-glucuronosyltransferase (UDP-GT) and ${\gamma}$-glutamylcysteine synthetase (GGCS). have a common regulatory sequence, Antioxidant or Electrophile Responsive Element (ARE/EpRE). Recently. Nrf2. discovered as a homologue of erythroid transcription factor p45 NF-E2, was shown to bind ARE/EpRE and induce the expression of these defense genes. Mice that lack Nrf2 show low basal levels of expression and/or impaired induction of these genes. which makes the animals highly sensitive to xenobiotic toxicity. Indeed. we show here that nrf2-deficient mice had a higher mortality than did the wild-type mice when exposed to acetaminophen (APAP). Detailed analyses of APAP hepatotoxicity in the nrf2 knockout mice indicate that a large amount of reactive APAP metabolites was generated in the livers due to the impaired basal expression of two detoxifying enzyme genes, UDP-GT (Ugt1a6) and GGCS. while the cytochrome P450 content was unchanged. Thus. the studies using the nrf2 knockout mice clearly demonstrate significance of the expression of Nrf2-regulated enzymes in protection against xenobiotic toxicity.

  • PDF