• Title/Summary/Keyword: commercial cellulases

Search Result 10, Processing Time 0.019 seconds

Chitosanolytic Characteristics of Cellulases from Trichoderma viride and Trichoderma reesei (Trichoderma viride 및 Trichoderma reesei 유래 Cellulase의 키토산 분해 특성)

  • Hong, Sang-Pill;Kim, Dong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.245-252
    • /
    • 1998
  • The chitosanolytic capabilities of cellulases, glucosidases, proteases and commercial enzymes were evaluated, and effective chitosanolytic cellulases from T. viride, T. reesei and Celluclast, a commercial enzyme from T. reesei were characterized. The reaction of cellulase from T. viride, T. reesei and Celluclast was optimal at pH 5. 0 and $45{\sim}55^{\circ}C$. Max. chitosanolytic activities of cellulases from both T. viride and T. reesei were observed at the enzyme/chitosan ratio=0.1 and chitosan concentration=3.0%. For the possible application of commercial Celluclast to chitosan oligosaccharides production, 3%(w/v) chitosan was reacted with 1%(v/v) Celluclast at pH 5.0 and $55^{\circ}C$. The apparent viscosity decreased by 98% within 30 minutes reaction and Max. contents of 50% EtOH solubles were 70% at 15 hrs reaction. Total reducing sugars were also increased with reaction time and maintained approx. 13.5% after 2hrs reaction. In 15 hrs treated chitosan hydrolyzates, various kinds of chitosan oligosaccharides were produced and contents of chitosan hexamer, known for its antitumor activities, were about 8.0%, about 4 times higher values compared with acid hydrolysis method. The results suggested that chitosan oligosaccharides could be produced with low-cost cellulases from T. reesei.

  • PDF

Investigation of the Hydrolysis of Polysaccharides by Crude Cellulases prepared from Several Species of Fungi (몇 종류의 곰팡이에서 분리되는 Crude Cellulase의 다당류 분해능력의 조사)

  • 김은수;김영민;이인규;최태주
    • Korean Journal of Microbiology
    • /
    • v.13 no.3
    • /
    • pp.85-90
    • /
    • 1975
  • Crude cellulases freshly prepared from cultures of Aspergillus niger, Prnicillum motatum, Trichoderma vride 16273 and Trichoderma viride 16374 were assayed on 4 different substrates including Na-CMC, cellulose powder, starch and sucrose. Enzyme prepared from A. niger contained highly active hydrolytic enzymes of the 4 substrates assayed. P. notatum [yielded relatively lower amount of cellulase but the extracts were also highly reactive on starch and sucrose. Trichoderma viride 16274 yielded very little cellulase and invertase, but the extracts showed a high degree of amylase activity. Trichoderma viride 16374, however, yielded collulase comparable to that of Penicillium notatum, but lower activities of amylase and invertase were seen. Commercial cellulases prepared from Penicillium notatum (cellulase[K]) and Trichoderma viride(cellulase[J]) indicated enzyme activities closely parallel to the crude enzymes freshly prepared from fungus cultures. The optimum pH's of cellulolytic activities of cellulase[K] and cellulase[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase[K] and cellualse[J] were 4.0 and 5.0 respectively. The optimum temperatures of the cellulolytic activities of cellulase [K] and cellulase [J] were $60{\circ}C$ and $50{\circ}C$ respectively. Assuming the average molecular weight of Na-CMC is about 115,000, the Km values of cellulase [K] and cellulase[J] were found to be $3.3{\times}10^{-5}/nM$ and $3.3{\times}10^{-4}/nM$ respectively.

  • PDF

Biopolishing of Cotton Fabric using Crude Cellulases from Acanthophysium sp. KMF001 (목재부후균, Acanthophysium sp. KMF001, 유래 섬유소분해효소를 이용한 섬유 개량)

  • Shin, Keum;Yoon, Sae-Min;Kim, Juhea;Kim, Young-Kyoon;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.381-388
    • /
    • 2016
  • Biopolishing using cellulases was introduced in the production of cotton fabric in order to improve the quality of fabric environmental friendly and is commonly used in the textile industry. In this study, the application of a crude cellulase from Acanthophysium sp. KMF001, which was excellent for the saccharification of cellulose, on biopolishing was evaluated. The optimum treatment biopolishing condition was at $50^{\circ}C$ and pH 4.5 for 60 minutes with 10% crude cellulase of fabric weight. After the optimized biopolishing, the crude cellulase of Acanthophysium sp. KMF001 reduced the tensile strength of the tested cotton fabric less than a commercial cellulase. The appearance of the cotton fabric after the treatment of the crude cellulase of Acanthophysium sp. KMF001 was similar to the fabric after a commercial cellulase treatment. All these results support that the crude cellulase of Acanthophysium sp. KMF001 was a good biopolishing cellulase.

Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation (알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산)

  • Shin, Soo-Jeong;Cho, Dae Haeng;Han, Sim-Hee;Kim, Young Hwan;Cho, Nam-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.

Empirical Evaluation of Cellulase on Enzymatic Hydrolysis of Waste Office Paper

  • Park, Enoch Y.;Ikeda, Yuko;Okuda, Naoyuki
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.7 no.5
    • /
    • pp.268-274
    • /
    • 2002
  • Enzymatic hydrolysis of waste office paper was evaluated using three commercial cellulases, Acremonium cellulase, Meicelase, and Cellulosin T2. Varying the enzyme loading from 1 to 10% (w/w) conversion of waste office paper to reducing sugar was investigated. The conversion increased with the increase in the enzyme loading: in the case of enzyme loading of 10% (w/w), Acremonium cellulase yielded 79%conversion of waste office paper, which was 17% higher compared to Meicelase, 13% higher than that of Cellulosin T2. Empirical model for the conversion (%) of waste office paper to re-ducing sugar (x) was derived from experimental results as follow, x = $kE^{m}t^{(aE+b)}$ where k, m, a, and b de-note empirical constants. E indicates initial enzyme concentration.

Impact of electron beam irradiation on enzymatic saccharification of yellow poplar (Liriodendron tulipifera L) (전자빔 조사 처리가 백합나무 효소 당화에 미치는 영향)

  • Shin, Soo-Jeong;Sung, Yong-Joo;Han, Gyu-Seong;Cho, Nam-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.198-201
    • /
    • 2008
  • The electron beam irradiation was applied as a pretreatment of the enzymatic hydrolysis of yellow poplar with doses of 0$\sim$450 kGy. The higher irradiation dose resulted in the more degradation of hardwood biomass not only from carbohydrates but also from lignin. This changes originated from the irradiation resulted in the better response to enzymatic hydrolysis with commercial cellulases (Celluclast 1.5L and Novozym 342). The more improvement on enzymatic hydrolysis by the irradiation was found in the xylan than in the cellulose of yellow poplar.

  • PDF

Characterization of Cellulases from Schizophyllum commune for Hydrolysis of Cellulosic Biomass (Schizophyllum commune에 의한 Cellulase 생산 및 섬유소계 바이오매스의 당화를 위한 효소적 특성)

  • Kim, Hyun-Jung;Kim, Yoon-Hee;Cho, Moon-Jung;Shin, Keum;Lee, Dong-Heub;Kim, Tae-Jong;Kim, Yeong-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.547-560
    • /
    • 2010
  • The optimum culture condition of Schizophyllum commune for the cellulase production and its enzymatic characteristics for saccharification of cellulosic biomass were analyzed. S. commune secrets ${\beta}$-1,4-xylosidase (BXL) and cellulases, including endo-${\beta}$-1,4-glucanase (EG), cellobiohydrolase (CBH), and ${\beta}$-glucosidase (BGL). The optimum reaction temperature for all cellulases was $50^{\circ}C$ and the thermostable range was $30{\sim}40^{\circ}C$C. The optimum reaction pH for all cellulases was 5.5 in a range of temperature from $0^{\circ}C$ to $55^{\circ}C$. The best nutritions for the cellulase production of S. commune among tested nutrients were 2% cellulose for the carbon source and corn steep liquor or peptone/yeast extract for the nitrogen source without vitamins. The environmental culture condition for the cellulase production was 5.5~6.0 for pH at $25{\sim}30^{\circ}C$. The enzyme activities of EG, BGL, CBH, and BXL were 3670.5, 631.9, 398.5, and 15.2 U/$m{\ell}$, respectively, after concentration forty times from the culture broth of S. commune which was grown at the optimized culture condition. Alternative filter paper unit assay showed 11 FPU/$m{\ell}$ enzyme activity. The saccharification tests using cellulase of S. commune showed the low saccharification rate on tested hardwoods but a high value of 50.5% on cellulose, respectively. The saccharification rate (50.5%) of cellulose by cellulase produced in this work is higher than 45.7% in the commercial enzyme (Celluclast 1.5L, 30 FPU/g, glucan).

Efficient Constitutive Expression of Cellulolytic Enzymes in Penicillium oxalicum for Improved Efficiency of Lignocellulose Degradation

  • Waghmare, Pankajkumar Ramdas;Waghmare, Pratima Pankajkumar;Gao, Liwei;Sun, Wan;Qin, Yuqi;Liu, Guodong;Qu, Yinbo
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.740-746
    • /
    • 2021
  • Efficient cellulolytic enzyme production is important for the development of lignocellulose-degrading enzyme mixtures. However, purification of cellulases from their native hosts is time- and labor-consuming. In this study, a constitutive expression system was developed in Penicillium oxalicum for the secreted production of proteins. Using a constitutive polyubiquitin gene promoter and cultivating with glucose as the sole carbon source, nine cellulolytic enzymes of different origins with relatively high purity were produced within 48 h. When supplemented to a commercial cellulase preparation, cellobiohydrolase I from P. funiculosum and cellobiohydrolase II from Talaromyces verruculosus showed remarkable enhancing effects on the hydrolysis of steam-exploded corn stover. Additionally, a synergistic effect was observed for these two cellobiohydrolases during the hydrolysis. Taken together, the constitutive expression system provides a convenient tool for the production of cellulolytic enzymes, which is expected to be useful in the development of highly efficient lignocellulose-degrading enzyme mixtures.

Trichoderma sp. FJ1의 섬유소폐기물을 이용한 Cellulolytic enzymes의 고생산

  • Yu, Seung-Su;Kim, Gyeong-Cheol;O, Yeong-A;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.449-452
    • /
    • 2002
  • A filamentous microorganism was isolated from completely rotten wood for the production of cellulolytic enzyme. The Trichoderma sp. FJ1 produced a large amount of cellulolytic enzymes, such as CMC, xylanase, ${\beta}-glucosidase$, and avicelase. For the production of the enzymes, when cellulolsic wastes were used as carbon sources of strain FJ1, rice straw showed higher enzyme activities than sawdust and pulp. The activities of CMC, xylanase, ${\beta}-glucosidase$, and avicelase were 2.95, 5.89, 0.45, and 0.12 U/ml in use of rice straw, respectively. To enhance production of the enzymes, the mixture substrate of rice straw and commercial cellulosic materials was investigated as carbon sources. The highest activities of CMCase, ${\beta}-glucosidase$, and avicelase were found in the mixture of rice straw and avicel, particularly rice straw:avicel (50:50), and the highest xylanase was obtained in the mixture ratio of 71:29. Bacto peptone addition of 0.1% showed enhanced production of the cellulolytic enzymes in which the activities of CMCase, xylanase ${\beta}-glucosidase$, and avicelase were 19.23, 27.18, 1.28, and 0.53 U/ml, respectively. The production of the enzymes using rice straw was efficiently induced in present of avicel and pulp containing high content of cellulose. Consequently, the filamentous microorganism, strain FJ1 utilized various cellulosic wastes as carbon sources and cellulases productivities were excellent compared to those of others strains reported previously, suggesting that the strain FJ1 will be expected as a favorable candidate for biological saccharification of cellulosic wastes in further.

  • PDF

Screening of Dietary Fiber Degradation Enzyme for Making Sweet Potato Soju by Vacuum Distillation (감압증류법의 고구마소주 제조를 위한 식이섬유 분해효소의 선별)

  • Takamine, Kazunori;Jeon, Byung-Hun;Kim, Won-Sin
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.35-39
    • /
    • 2012
  • Sweet potato soju(SPS) has been made by vacuum distillation because sweet potato contains much fibrous materials which give high density to sweet potato mash. Generally, the SPS made by vacuum distillation has soft flavors and tastes. If the viscosity of sweet potato mash could be decreased by degradation enzyme, the process and production of SPS making by the method of vacuum distillation may be simplified and easier to distil the fermented sweet potato. Because the fibrous materials of sweet potato contains pectin with methoxyl group, methanol can be produced by fibrous degradation enzyme. For appling the fiber degradation enzymes to sweet potato mash for making SPS, the enzyme should be needed to degrade fibrous material without producing methanol. Special two fibrolytic enzymes are selected from 26 kind of commercial enzymes for the simplified and easier production of sweet potato soju by vacuum distillation, The selected enzyme A and X can degrade the fibrous material pectin of sweet potato without producing methanol. Although the different companies have produced the enzymes, same cellulase has been prepared from Trichoderma. reesei. The viscosity of sweet potato mash treated by the enzymes is decreased by 3 times with comparison to the viscosity of sweet potato mash of control group. The methanol concentration in the vacuum distilled SPS treated with the enzymes is 0.16%. The concentration is similar to that of commercially distilled SPS(0.15%). The result may suggest that the selected cellulases, A and X, can be used to make SPS by vacuum distillation.