• 제목/요약/키워드: combustion wave

검색결과 239건 처리시간 0.02초

SHS 법에 의한 $Ti5_Si_3$의 합성시 온도 Profile 분석 (Temperature Profile Analysis of $Ti5_Si_3$ in Self-Propagating High Temperature Synthesis)

  • 김도경;이형직;김익진;이형복
    • 한국세라믹학회지
    • /
    • 제32권3호
    • /
    • pp.341-348
    • /
    • 1995
  • An analysis of the use of temperature profiles in the determination of the kinetic parameters of combustion synthesis of Ti5Si3 were investigated. From profile analysis, an apparent activation energy of 12KJ/mol was calculated. The Maximum heating rate achieved during 10wt% Ti5Si3 reaction by the product dilution method was approximately $1.5\times$104 K/s. Coupling this value with the measured wave velocity of 7.02 cm/s yields a maximum thermal gradient of 2.14$\times$103 K/cm. The value of tr (=t*) was calculated to be 1.2$\times$10-1 s and the value of td (=tx) was calculated to be 32.89 s. Using the definition of t* and the measured wave velocity, the effective thermal diffusivity, $\alpha$, was calculated to be 0.59$\times$10 $\textrm{cm}^2$/s. From these analysis, the power function, G, was also calculated.

  • PDF

브레이튼과 펄스 데토네이션 복합 엔진 사이클의 열역학적 성능 해석 (Thermodynamic Analysis of Hybrid Engine Cycle of Brayton and Pulse Detonation Engine)

  • 김건홍;구자예
    • 한국항공운항학회지
    • /
    • 제15권1호
    • /
    • pp.1-10
    • /
    • 2007
  • When detonation is occurred, the working fluid is compressed itself, though there are no other devices that compress the fluid. As a result, an engine which uses detonation for a combustion process doesn't need moving parts so that the engine can be lighter than other engines ever exist, and such an engine is often referred to as a pulse detonation engine. Since using detonation has higher performance than using deflagration, many studies have been attempting to control and analyze the engines using detonation as combustion. The purpose of this study is to analyze the hybrid cycle which is consisted of Brayton and Pulse Detonation Engine cycle. At first, we set the theoretical basis of detonation analysis, and after that we consider two hybrid cycles; a turbojet hybrid cycle and a turbofan hybrid cycle. The more energy released, the higher detonation Mach number the detonation wave has. In general, a cycle which has a detonation process has higher performances but thermal efficiency of hybrid turbofan engine.

  • PDF

추진기관 혁신적 연비향상을 위한 승압연소기 개요 및 연구동향 (Introduction to Pressure Gain Combustors for the Game-Changing SFC Improvement in Propulsion Systems)

  • 최정열
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.301-302
    • /
    • 2012
  • During a last decade, detonative combustion is promising combustion mechanism of high-speed propulsion systems, but is more rigorously considered in these days as a game-changer for the improvement of thermodynamic efficiency of propulsion and power generation systems. Regardless of the skepticism about the pressure loss associated with the strong shock waves, it is shown that the additional compression by the strong shock wave exhibits increased thermodynamics efficiency that is not achievable by conventional compression systems. Present talk will give an introduction to the concepts and the recent activities on the pressure gain combustors (PGC) researches based on detonation phenomena.

  • PDF

고체추진제의 연소불안정특성 측정방법에 대한 연구 (A Study on Determining Method of Combustion Instability Characteristics of Solid Propellants)

  • 윤재건;유지창;이정권
    • 대한기계학회논문집
    • /
    • 제18권4호
    • /
    • pp.1081-1086
    • /
    • 1994
  • The phenomena called "combustion instabilities" in a solid-propellant rocket motor may be viewed as sustaining or amplifying pressure waves. Energy is supplied by combustion processes near the surface of the burning propellant. T-burner method is used to determine the response function of the propellant to the pressure wave. But initial tests were failed because of the Helmholtz resonation inside the T-burner. Acoustic analysis of the original T-burner is carried out and suppression techniques for the Helmholtz oscillation are introduced.ntroduced.

가스터빈 연소기의 화염 불안정성에 관한 연구 (A study on the combustion instability in a bluffbody dump combustor)

  • 이병준
    • 대한기계학회논문집B
    • /
    • 제22권7호
    • /
    • pp.1022-1029
    • /
    • 1998
  • The relation of the inlet fuel distribution, velocity, and overall equivalence ratio to the stability of a lean burning no-swirl dump combustor was examined. Premixed or partially premixed natural gas was introduced into the air stream, which flowed to the dump region through an annular inlet pipe. Inlet air was preheated upto 400 deg.C. Combustion instability was observed to occur at higher value of equivalence ratio (> 0.6) as the degree of unpremixedness was increased. Instabilities exhibited a dominant frequency of ~ 500 Hz, which corresponded to a half wave mode of combustor. CH chemiluminescence and pressure fluctuations were in-phase when combustion instabilities occurred. Acetone LIF images revealed that there was a strong fuel concentration gradient across the inlet annulus. Phase resolved OH LIF images showed that inlet fuel distribution was affected by the combustion instabilities.

확산화염의 진동불안성의 기원에 대해서 (On the Origin of Oscillatory Instabilities in Diffusion Flames)

  • 김종수
    • 한국연소학회지
    • /
    • 제10권3호
    • /
    • pp.25-33
    • /
    • 2005
  • Fast-time instability is investigated for diffusion flames with Lewis numbers greater than unity by employing the numerical technique called the Evans function method. Since the time and length scales are those of the inner reactive-diffusive layer, the problem is equivalent to the instability problem for the $Li\tilde{n}\acute{a}n#s$ diffusion flame regime. The instability is primarily oscillatory, as seen from complex solution branches and can emerge prior to reaching the upper turning point of the S-curve, known as the $Li\tilde{n}\acute{a}n#s$ extinction condition. Depending on the Lewis number, the instability characteristics is found to be somewhat different. Below the critical Lewis number, $L_C$, the instability possesses primarily a pulsating nature in that the two real solution branches, existing for small wave numbers, merges at a finite wave number, at which a pair of complex conjugate solution branches bifurcate. For Lewis numbers greater than $L_C$, the solution branch for small reactant leakage is found to be purely complex with the maximum growth rate found at a finite wave number, thereby exhibiting a traveling nature. As the reactant leakage parameter is further increased, the instability characteristics turns into a pulsating type, similar to that for L < $L_C$.

  • PDF

연소실내 공명기 장착 위치에 따른 음향갑쇠 효과에 관한 실험적 연구 (An Experimental Study on Effect of Half-Wave Resonator Position on Acoustic Damping in a Combustion Chamber)

  • 손채훈;김철희
    • 한국추진공학회지
    • /
    • 제12권2호
    • /
    • pp.1-7
    • /
    • 2008
  • 연소실내 음향 감쇠를 위해 장착되는 반파장 공명기의 반경 방향 위치 효과를, 상온에서의 선형 음향 실험을 통해 실험적으로 연구하였다. 음향 감쇠의 정량화를 위해 감쇠 인자를 사용하였다. 감쇠하고 하는 음향 모드에 대해 공명기가 최적의 길이를 갖는 경우에는, 반경 방향 위치의 증가에 따라 음향 감쇠 효과가 증가하였다. 또한, 감쇠 인자의 변화 추이는 감쇠시키고자 하는 음향 모드의 진폭 변화 추이와 유사하였다. 장착 위치가 장착면의 중심에 접근할수록 음향 감쇠 효과가 감소할 뿐만 아니라 분사기 길이와의 상관성토 감소하였다. 한편, 공명기가 비최적 길이를 갖는 경우에는, 반경 방향 위치 효과가 거의 나타나지 않아 위치와 무관한 감쇠 인자값을 관찰할 수 있었다. 공명기의 길이와 위치에 따라 감쇠 성능을 평가하였다.

TiB2 나노 입자의 연소합성 시 MgO 희석제가 미치는 영향 (Effect of MgO Diluents in Combustion Synthesis of TiB2 Nano Particles)

  • 이병기;이종무;박제형;강을손;백승수;김도경
    • 한국세라믹학회지
    • /
    • 제42권9호
    • /
    • pp.607-612
    • /
    • 2005
  • The effect of MgO diluents in combustion synthesis of $TiB_2$ nano particles was investigated. The reaction $TiO_2\;+\;B_2O_3\;+\;xMg\;{\rightarrow}\;TiB_2\;+\;5MgO$ was used to synthesize $TiB_2$ nano particles. The combustion velocity was measured to examine the relation between the reaction temperature and the morphologies of particles. The diluent MgO did not react with the reactants and played a role to decrease combustion temperature. As the MgO diluents contents increased, the particles with the smaller size and the narrower size distribution were synthesized. At the condition of 6 mole of MgO, the combustion wave velocity was about 5 cm/see and the synthesized particles showed the size of 60 nm with narrow size distribution.

모형 가스터빈 연소기내 연소불안정성에 대한 실험적 연구 (An Experimental Study on Combustion Instability Mechanism in a Dump Gas Turbine Combustor)

  • 이연주;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2001
  • The knowledge of flame structure is essential for control of combustion instability phenomena. Some results of an experimental study on mechanism of naturally occurring combustion oscillations with a single dominant frequency are presented. Tests were conducted in a laboratory-scale dump combustor at atmospheric pressure. Sound level meter was used to track the pressure wave inside the combustor. The observed instability was a longitudinal mode with a frequency of $\sim341.8Hz$. Instability map was obtained at the condition of inlet temperature of $360^{\circ}C$, mean velocities of $8.5\sim10.8m/s$ and well premixed mixture. It showed that combustion instability was susceptible to occur in the lean conditions. In this study, unstable flame was observed from stoichiometric to 0.7 in overall equivalence ratio. At selected unstable conditions, phase-resolved OH chemiluminescence images were captured to investigate flame structure with various mean velocities. As mean velocity is increased, the flame grows and global heat release was changed. Due to these effects, combustion instability can be maintained at more lean air-fuel ratio. Also, these results give an insight to the controlling mechanism for an increasing heat release at maximum pressure.

  • PDF

모사 SNG 연료를 적용한 모델 가스터빈 연소기의 연소 불안정성에 관한 실험적 연구 (An Experimental Study on Combustion Instability in Model Gas Turbine Combustor using Simulated SNG Fuel)

  • 최인찬;이기만
    • 한국연소학회지
    • /
    • 제20권1호
    • /
    • pp.32-42
    • /
    • 2015
  • The combustion instability was experimentally investigated in model gas turbine combustor with dual swirl burner. When such instability occurs, a strong coupling between pressure oscillation and unsteady heat release excites a self-sustained acoustic wave which results in a loud sound, and can even cause fatal damage to the combustor and entire system. In present study, to understand the combustion instability with a premixed mixture, the detailed periods of pressure and heat release data in unstable flame mode were investigated by various measurement methods at relatively rich condition and lean condition near flammable limits. Also, to prepare the utilization of synthetic natural gas (SNG) fuel in gas turbine system, an investigation was conducted using a simulated SNG including methane as a reference fuel to examine the effects of $H_2$ content on flame stability. These results provide that the instability due to flash-back behaviour like CIVB phenomenon occurred at rich condition, while the repetition of relighting and extinction caused the oscillation of lean condition near flammable limit. From the analysis of $H_2$ content effects, it is also confirmed that the instability frequency is proportional to the laminar burning velocity at both rich and lean condition.