• Title/Summary/Keyword: combustion time

Search Result 1,276, Processing Time 0.028 seconds

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

The experimental study on the Characteristics of the Moxa-Combustion in the input period of indirect moxibustion (간접구(間接灸)의 제품별(製品別) 입열기(入熱期) 연소특성(燃燒特性)에 관한 연구(硏究))

  • Ha, Chi-Hong;Cho, Myung-Rae;Chae, Woo-Seok;Park, Young-Bae
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.89-105
    • /
    • 2000
  • In order to obtain the clinical data on the different effects of the three different methods of indirect moxibustion, moxa-combustion time, peak temperature, average temperature, maximum gradient temperature, average gradient temperature, and moxa-combustion calorie rate of the input period in ARIRANG, JANG, PUNG were measured through this experiment. The results of the experiment were as follows : 1. In the combustion time, during the input period ARIRANG had the longest combustion time followed by PUNG, JANG in a descending order but these were not acknowledged to have significant difference each other. 2. In the peak temperature of the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 3. In the average temperature, during the input period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 4. In the maximum gradient temperature, during the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 5. In the average gradient temperature, during the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 6. In the moxa-combustion calorie rate, during the input period, JANG had the highest temperature followed by ARIRANG, PUNG in a descending order. ARIRANG and PUNG were acknowledged to have significant difference with JANG. ARIRANG and PUNG however were not acknowledged to have difference each other.

  • PDF

The experimental study on the Characteristics of the Moxa-Combustion in the retaining period of indirect moxibustion (간접구(間接灸)의 제품별(製品別) 보온기(保溫期) 연소특성(燃燒特性)에 관한 연구(硏究))

  • Yoon, Jung-Sun;Cho, Myung-Rae;Yoon, Yeo-Chung;Park, Young-Bae
    • Journal of Acupuncture Research
    • /
    • v.17 no.1
    • /
    • pp.75-88
    • /
    • 2000
  • In order to obtain the clinical data on the different effects of the three different methods of indirect moxibustion, moxa-combustion time, peak temperature, average temperature, maximum gradient temperature, average gradient temperature, and moxa-combustion calorie rate of the retaining period in ARIRANG, JANG, PUNG were measured through this experiment. The results of the experiment were as follows : 1. In the combustion time, during the retaining period ARIRANG had the longest combustion time followed by PUNG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 2. In the average temperature, during the retaining period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 3. In the maximum gradient temperature, during the retaining period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. JANG and PUNG were acknowledged to have significant difference with ARIRANG. JANG and PUNG however were not acknowledged to have difference each other. 4. In the average gradient temperature, during the retaining period, JANG had the highest temperature followed by ARIRANG, PUNG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 5. In the moxa-combustion calorie rate, during the retaining period, PUNG had the highest temperature, ARIRANG, JANG were founded in error limits. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other.

  • PDF

Combustion Analysis in a Pro-Combustion Chamber Diesel Engine by Approximate Heat Release Rate (근사적 열발생율에 의한 예연소실식 디젤기관의 연소해석)

  • 왕우경
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.29 no.1
    • /
    • pp.30-38
    • /
    • 1993
  • In this study, the combustion characteristics in a pre-combustion chamber diesel engine was investigated with experimental conditions of marine engine load. The heat release analysis used was a single-zone single-chamber thermodynamic analysis based on pre-combustion chamber pressure-time data. Based on the results of this investigation, the following conclusions were reached: 1) Increasing the load, peak pressure was increased and position of P sub(max) was retarded in crank angle degrees. 2) Ignition delay time was almost constant without relating to the load and the heat values to form a combusitible mixture were decreased apparently with increasing the load. 3) In premixed-combustion mode, the pattern of heat release rate was resembled without relating to the load and premixed-combustion time was shortened with increasing the load. 4) Increasing the load, mass of premixed-burned fuel was increased slightly, but was invariable beyond a certain fuel-air ratio. 5) Increasing the load, premixed-burned fraction was decreased.

  • PDF

Experimental Study on the Characteristics of Combustion in Middle Size-direct Moxibustion (중주(中炷) 직접구(直接灸)의 연소특성에 관한 실험적 연구)

  • Choi, Youn-Sung;Kim, Do-Ho;Lee, Geon-Hui;Lee, Geon-Mok
    • Journal of Acupuncture Research
    • /
    • v.26 no.1
    • /
    • pp.111-119
    • /
    • 2009
  • Objectives : The purpose of this study is to investigate the mechanism and effect of moxa bucket moxibustion, to be used as the quantitative data through the measurement of temperature, and to grasp the thermodynamic characteristics of moxa bucket moxibustion. Methods : We have selected the moxa bucket moxibustion. We have made a comparative study of the thermodynamic characteristics of moxa bucket moxibustion. We have examined combustion times, temperatures, temperature gradients in each period during a combustion of moxa bucket moxibustion made by oak wood. Results : 1. We could design the moxa bucket moxibustion so that it has $57.6^{\circ}C$ maximum temperature with 7g weight and 10mm height, if we use more weight of moxa or lower height of moxa, we can observe relatively elevated maximum temperature. We observed the maximum temperature following the measuring position of moxa bucket and we could see higher temperature at the center of the moxa bucket and lower temperature at the side of the moxa bucket. 2. We could design the moxa bucket moxibustion with 5g moxa and 10mm height so that it has 0.12 $1^{\circ}C/sec$ of maximum temperature gradient, and it has relatively high temperature gradient at lower weight and height condition. 3. We could design the moxa bucket moxibustion with 7g moxa and 15mm height so that it has 4,135sec of the longest effective temperature combustion time. If we use more weight of moxa or higher height of moxa, we can observe relatively extended effective temperature combustion time. Conclusions : We observed the longest effective combustion time following the measuring position of moxa bucket. We can see a higher temperature at the center of the moxa bucket and a lower temperature at the side of the moxa bucket.

  • PDF

Experimental Study on the Combustion Chracteristics in the Moxa Bucket Moxibustion (온통구(溫筒灸)의 연소특성(燃燒特性)에 관한 실험적(實驗的) 연구(硏究))

  • Choi, Jung-Sun;Yoon, Ju-Yeong;Lee, Geon-Mok;Lee, Geon-Hui
    • Journal of Acupuncture Research
    • /
    • v.24 no.1
    • /
    • pp.49-77
    • /
    • 2007
  • Objectives: The purpose of this study is to investigate the mechanism and effect of moxa bucket moxibustion. Objectively, to be used as the quantitative data through the measurement of temperature, and to grasp the thermodynamic characteristics of moxa bucket moxibustion. Methods: We have selected of the moxa bucket moxibustion. We make a comparative study of the thermodynamic characteristics of moxa bucket moxibustion. We examined combustion times, temperatures, temperature gradients in each period during a combustion of moxa bucket moxibustion made by oak wood. Results: 1. We can design the moxa bucket moxibustion that it has 57.6$^{\circ}C$ maximum temperature with 7g weight and 10mm height, if we use more weight of moxa or lower the height of moxa, we can observe relatively elavated maximum temperature. We observe the maximum temperature following the measuring position of moxa bucket and we can see higher temperature at the center of the moxa bucket and lower temperature at the side of the moxa bucket. 2. We can design the moxa bucket moxibustion with 5g moxa and 10mm height that it has 0.121 $^{\circ}C$/sec of maximum temperature gradient, and it has relatively high temperature gradient at lower weight and height condition. 3. We can design the moxa bucket moxibustion with 7g moxa and 15mm height that it has 4,135sec of the longest effective temperature combustion time, if we use more weight of moxa or higher height of moxa, we can observe relatively extended effective temperature combustion time. We observe the longest effective combustion time following the measuring position of moxa bucket. We can see higher temperature at the center of the moxa bucket and lower temperature at the side of the moxa bucket.

  • PDF

A study on the Combustion Characteristics of Wall Paper (내장벽지의 연소특성에 관한 연구)

  • Oh, Kyu-Hyung;Choi, Yeon-Yi;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.90-97
    • /
    • 2007
  • Combustion characteristics and toxicity of combustion gas of wallpaper samples were analyzed to evaluate the fire risk of wallpaper furnished in living space. In this study ash residue ratio was measured with high temperature electric furnace, and thermal analysis was carried out with TGA. Combustion time and smoke concentration were measured with cone heater and combustion gas analyzer. Smoke density of samples was measured using smoke chamber of ASTM E 662. The experimental results were showed as followings. Pyrolysis of silk wallpaper started at lower temperature compared to the other samples. It means that the silk wallpaper can be ignited at low heat flux and will have more fire risk than the others. Ignition time by radiation heat flux of silk wallpaper is shorter compared to the other samples, so evacuation time must be reduced. In the case of vinyl coated silk wall paper, carbon mono oxide concentration is the highest and the toxicity and damage effect to consciousness was stronger compared to the other samples. Smoke density of silk wall paper and fire retardant mixed coated silk wall paper were very high due to vinyl coating.

Combustion Enhancemen of Premixed Mixtures Using Laser-Induced Cavity Ignition (레이저 유도 공동 점화방식을 이용한 예혼합기 연소 특성 향상)

  • 모하메드하산;고영성;정석호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.8-16
    • /
    • 1999
  • In this study, a new type of laser-induced ignition using a conical cavity has been developed to utilize all the available incident laser energy. In the method, it is possibile to ignite combustible methane/air mixtures by directing a laser beam of a constant small diameter into a small conical cavity, without focusing the laser beam. Shadow graphs for the early stage of combustion process show that a hot gas jet is ejected from the cavity, especially with lean mixture. After a very show time, the hot gas jet finishes issuing and the flame behavior is quite similar to flame propagation initiated by a conventional spark ignition. The combustion process using the new method exhibits more rapid pressure increase and a higher maximum pressure rise than that of the center ignition using laser-induced spark, with significant decrease in the combustion time. Also, the new ignition method is numerically modeled to simulate the flame kernel development and subsequent combustion process using the KIVA-IIcode. The calculated results show satisfactory agreement with experimental results.

  • PDF

Effect of Secondary Air on Flow and Combustion Characteristics in a Pyrolysis Melting Incinerator (열분해 용융소각로 연소실의 2차공기 주입 영향에 관한 전산해석 및 실험)

  • Jeon, Byoung-Il;Park, Sang-Uk;Shin, Dong-Hoon;Ryu, Tae-Woo;Jeon, Kum-Ha;Hwang, Jung-Ho;Lee, Jin-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.149-157
    • /
    • 2004
  • In the present paper we studied experimentally fundamental optimization of oxygen enriched pyrolysis melting incinerator, Characteristics of this system was confirmed dealing with the gas flow and combustion properties for the inside secondary air injection. The experiment setup has a disposal rate of 30kg/hr which was measured by the inside temperature and gas. Along with above experiments, the three-dimensional computation was employed to analyse the combustion fluid dynamics and gas residence time. Equations for turbulence and heat - transmission as well as chemical reactions were solved by using common codes. The experimental combustion chamber was composed of staged combustion types structure for reducing NOx. Finally, it was verified that the control of the secondary air and air ratio of thermo stack were important. In the computational analysis, it showed reasonable agreement with the experimental results regarding the temperature and discharged gas concentration.

  • PDF

Combustion Pressure Calculation of Kick Motor using Stain on Cylinder Section of Composite Case (복합재 케이스의 실린더 변형률을 이용한 킥모터 연소 압력 계산)

  • Yi, Moo-Keun;Kil, Kyoung-Sub;Lee, Kyoung-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.777-780
    • /
    • 2010
  • A method for the calculation of the combustion pressure of Kick-Motor was proposed, which is based on the circumferential direction strain on the cylinder of Kick-Motor. At first, polynomials which approximate the ratio of strain and Combustion Pressure during Combustion Time was calculated from ground firing tests. Then strain data during flight time was plugged into the polynomials to get Combustion Pressure of the Kick-Motor. Compared with the measured pressure data during flight the converted showed similar trend. Pressure difference between them was about 10psi.

  • PDF