• 제목/요약/키워드: combustion time

검색결과 1,276건 처리시간 0.03초

정적연소기에서의 메탄-공기 혼합기의 연소특성(1) : 균질급기 (Combustion Characteristics of Methane-Air Mixture in a Constant Volume Combustion Chamber(1): Homogeneous Charge)

  • 최승환;전충환;장연준
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.48-57
    • /
    • 2003
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at spark plug and the combustion characteristics of homogeneous charge methane-air mixture under various initial pressure, excess air ratio and ignition times in quiescent mixture. The flow characteristics such as mean velocity and turbulence intensity was analyzed by hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer and flame propagation acquired by ICCD camera were used to investigate the effect of initial pressure, excess air ratio and ignition times on pressure, combustion duration, flame speed and burning velocity. Mean velocity and turbulence intensity had the maximum value at 200 or 300ms and then decreased to near 0 value gradually after 3 seconds. Combustion duration, flame speed and burning velocity were observed to be promoted with excess air ratio of 1.1, lower initial pressure and ignition time of 300ms.

목재의 연소특성(1) (질량감소와 착화지연) (Combustion Characteristics of Wood Materials (1) (Mass Reduction and Ignition Delay))

  • 김춘중
    • 한국연소학회지
    • /
    • 제4권2호
    • /
    • pp.11-22
    • /
    • 1999
  • Combustion characteristics of the wood chips(balsa chips) were experimentally investigated with respect to the thermal recycle system of the urban waste. The urban waste contains plastics, vegetable and wood materials. Wood was chosen as an example of the one of the component of urban dust. A small wood chip was burned in a electric furnace by the micro-electric balance. The mass reduction rate was normalized by the initial mass of test piece and the time of volatile combustion end. When the mass of the wood chips(balsa chips) was larger than 0.5g, the combustion similarity was found on the normalized mass reduction rate.

  • PDF

LES기반 연소모델과 Helmholtz 방정식을 이용한 LIMOUSINE 버너의 연소불안정 해석 (Combustion Instability Analysis of LIMOUSINE Burner using LES-based Combustion Model and Helmholtz Equation)

  • 신영준;전상태;김용모
    • 한국연소학회지
    • /
    • 제22권3호
    • /
    • pp.41-46
    • /
    • 2017
  • This study has numerically investigated the flame-acoustics interactions in the turbulent partially premixed flame field. In the present approach, in order to analyze the combustion instability, the present approach has employed the LES-based combustion model as well as the Helmholtz solver. Computations are made for the validation case of the partially premixed LIMOUSINE burner. In terms of the FFT data, numerical results are compared with experimental data. Moreover, Helmholtz equation in frequency domain is solved by combining CFD field data including the flight time from a nozzle to the flame zone. Based on numerical results, the detailed discussions are made for the essential features of the combustion instability encountered in the partially premixed burner.

민코 아역청탄의 순산소 연소특성 (Combustion Characteristics of Minco Sub-bituminous Coal at Oxy-Fuel Conditions)

  • 김재관;이현동;장석원;김성철
    • 한국연소학회지
    • /
    • 제14권2호
    • /
    • pp.1-9
    • /
    • 2009
  • New way to effectively capture $CO_2$ in coal fired power plant is the combustion of coal using oxy-fuel technology. Combustion characteristics of Minco sub-bituminous coal at oxy-fuel conditions using TGA and drop tube furnace (DTF) were included activation energy about the char burnout, volatile yield and combustion efficiency of raw coal, the porosity of pyrolyzed char and fusion temperature of by-product ash. TGA result shows that the effect of $CO_2$ on combustion kinetics reduces activation energy by approximately 7 kJ/mol at air oxygen level(21% $O_2$) and decreases the burning time by approximately 16%. The results from DTF indicated similar combustion efficiency under $O_2/CO_2$ and $O_2/N_2$ atmospheres for equivalent $O_2$ concentration whereas high combustion efficiency under $O_2/N_2$ than $O_2/CO_2$ was obtained for high temperature of more than $1,100^{\circ}C$. Overall coal burning rate under $O_2/CO_2$ is decreased due to the lower rate of oxygen diffusion into coal surface through the $CO_2$ rich boundary layer. By-product ash produced under $O_2/CO_2$ and $O_2/N_2$ was similar IDT in irrelevant to $O_2$ concentration and atmospheres gas during the coal combustion.

  • PDF

시간지연 모델을 이용한 비선형 연소불안정 해석기법 연구 (Numerical Analysis of Nonlinear Combustion Instability Using Pressure-Sensitive Time Lag Hypothesis)

  • 박태선;김성구
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.671-681
    • /
    • 2006
  • This study focuses on the development of numerical procedure to analyze the nonlinear combustion instabilities in liquid rocket engine. Nonlinear behaviors of acoustic instabilities are characterized by the existence of limit cycle in linearly unstable engines and nonlinear or triggering instability in linearly stable engines. To discretize convective fluxes with high accuracy and robustness, approximated Riemann solver based on characteristics and Euler-characteristic boundary conditions are employed. The present procedure predicts well the transition processes from initial harmonic pressure disturbance to N-like steep-fronted shock wave in a resonant pipe. Longitudinal pressure oscillations within the SSME(Space Shuttle Main Engine) engine have been analyzed using the pressure-sensitive time lag model to account for unsteady combustion response. It is observed that the pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions.

참억새(Miscanthus)燃料의 着火溫度 및 燃燒熱量 (Catch-fire Temperature and Amount of Combustion-Heat on the Fuel of Miscanthus type)

  • Kim, Kwan-Soo;In-Soo Jang;Jae-Soon Lee
    • The Korean Journal of Ecology
    • /
    • 제18권4호
    • /
    • pp.483-491
    • /
    • 1995
  • This study examined the relationship among catch-fire, burning, maximum temperature (MT), amount of combustion-heat (ACH), and combustive time (CT) in heating temperature treated with the same amount of each organ of Miscanthus. In the survey sites, about 19% of the areaswere covered by Miscanthus types, and the dry weight of Miscanthus and debris on the ground were 1,164 and 178 g/㎡, respectively. At 350℃ and 400℃, the rise of temperature by Culm type (culms and ears) and Leaf type (leaves and debris) were 90℃ and 82℃, respectively. At 350℃, durning time (BT) of culms-200, ears-200, ears-200, leaves-200 and debris-200 was 0-10’30”, 0-07’40”, 0-04’20”and 0-02’40”, and that at 400℃ was 0-01’20”, 0-00’50” 0-00’35”and 0-00’30”, respectively. BT was shorter at higher temperatures, and BT of Leaf type was shorter than that of Culm type. The amount of samples consumed was as follows: Culm type (culms-200 and ears-200) was 14.6g and 12.6g more than Leaf type (leaves-200 and debris-200) at 350℃ and 400℃, respectively. The total amount of combustion-heat (TACH) of samples was 5,859.7 kcal. The amount of mean combustion-heat generated from sample at 350℃ and 400℃ differed little: 727.6 kcal (24.9%) at 350℃ and 737.3 kcal (26.0%) at 400℃.

  • PDF

석탄(石炭)의 유동층(流動層) 연소(燃燒)에 관(關)한 S. ENDRENYI와 B. PALANCZ의 수학적(數學的) 수정(修正)모델(비표면적(比表面積) 변화(變化)의 영향(影響)) (Modified Mathermatical Model of S. ENDRENYI and B. PALANCZ for Fluidized Bed Coal Combustion - Effect on the Variation of Specific Surface -)

  • 김명준;이관석;서정윤
    • 대한설비공학회지:설비저널
    • /
    • 제17권1호
    • /
    • pp.74-82
    • /
    • 1988
  • A numerical analysis of the mathematical model for fluidized bed coal combustion has been performed. Based on the physical nature of the specific surface variation due to the decreasing of coal particle diameter according to the combustion process, the modified model which has been added the specific surface variation to the S.ENDRENYI and B.PALANCZ's mathematical model was established in this study. From the numerical analysis of these two models, it was found that the perfect combustion time is increasing largely at least 5 seconds in the modified model in comparison with that of the S.ENDRENYI and B.PALANCZ's model, and the bed temperature and the coal particle surface temperature during the main combustion period represent constant with time in the S.ENDRENYI and B.PALANCZ's model, on the other hand, these properties are decreasing linearly with time in the modified model.

  • PDF

Ni-25at.%Al 금속간화합물의 연소합성반응에 미치는 사전 Annealing 처리의 영향 (Effects of Pre-Annealing Treatment on the Combustion Synthesis of Ni3Al Intermetallics Coating)

  • 이한영;모남규
    • Tribology and Lubricants
    • /
    • 제37권2호
    • /
    • pp.62-70
    • /
    • 2021
  • The problem with intermetallics coating using the heat of molten casting is that the heat generated during combustion synthesis dissolves the coating and the substrate metal. This study investigates whether pre-annealing before synthesis can control the reaction heat, with the aim of Ni3Al coating on the casting surface. Therefore, the effects of the annealing temperature and time on the combustion synthesis behavior of the powder compact of Ni-25at%Al after annealing were investigated. As results, the reaction heat when synthesized decreased as the annealing temperature was high and the annealing time was longer. This was attributed to the fact that Al was diffused to Ni particles during low temperature annealing and intermediate Ni-Al compounds were formed during high temperature annealing. After combustion synthesis, however, it was found that their microstructures were almost identical except for the amount of intermediate intermetallics. Furthermore, an annealing temperature above 450℃, at which intermediate compounds begin to form, is needed to prevent the dissolving problem during synthesizing. The intermetallics synthesized after annealing at higher temperature and prolonger annealing time showed a good wear resistance. This might be because much intermediate intermetallics of high hardness were remained in the microstructure.

화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구 (Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber)

  • 원용태;이승목
    • 공업화학
    • /
    • 제30권5호
    • /
    • pp.546-555
    • /
    • 2019
  • 본 연구는 국내 화장로 설비의 주류를 이루는 대차방식 화장로의 성능개선을 목표로 하였다. 주연소실 형상 변화를 통해 용적을 증대시키고, 버너연소제어 최적화를 통한 화장시간 단축 및 에너지 사용량 절감기술을 실증설비 기반으로 연구하였다. 1차적으로 열유동해석을 통해 최적화된 구조설계로 주연소실의 체적을 약 70% 증대시키므로 연소배가스의 체류시간이 증대되는 효과를 얻을 수 있었고, 이를 통해 설계한 파이로트 화장로를 제작하여 다양한 운전조건에서 연소거동을 실험하고 주연소실 형상별 최적의 운전방안을 도출하였다. 이렇게 도출된 결과를 반영하여 실증 화장로를 설계하고, P시 Y화장장에 설치하였다. 실증 화장로 조업을 통해 최적 연소조건을 도출할 수 있었고, 고온의 연소배가스의 체류시간 증대에 따른 에너지 효율의 증대효과로 기존대비 화장시간 및 연료사용량을 최소화할 수 있었다. 즉, 화장시간은 기존 화장로 조업대비 44.1% 단축된 38 min이었고, 연료사용량은 기존 화장로 대비 54.4% 절감된 $21.8Nm^3$이었다.

저온연소조건에서 급속압축기를 이용한 n-heptane/n-butanol 혼합연료의 착화지연에 관한 연구 (The investigation on the Ignition Delay of n-heptane/n-butanol Blend Fuel Using a Rapid Compression Machine at Low Temperature Combustion Regime)

  • 송재혁;강기중;;;최경민;김덕줄
    • 한국연소학회지
    • /
    • 제18권2호
    • /
    • pp.32-41
    • /
    • 2013
  • This study presents both experimental and numerical investigation of ignition delay time of n-heptane and n-butanol binary fuel. The $O_2$ concentration in the mixture was set to 9-10% to make high exhaust gas recirculation( EGR) rate condition which leads low NOx and soot emission. Experiments were performed using a rapid compression machine(RCM) at compressed pressure 20bar, several compressed temperature and three equivalence ratios(0.4, 1.0, 1.5). In addition, a numerical study on the ignition delay time was performed using CHEMKIN codes to validate experimental results and predict chemical species in the combustion process. The results showed that the ignition delay time increased with increasing the n-butanol fraction due to a decrease of oxidation of n-heptane at the low temperature. Moreover, all of the binary fuel mixtures showed the combustion characteristics of n-heptane such as cool flame mode at low temperature and negative-temperature-coefficient(NTC) behavior. Due to the effect of high EGR rate condition, the operating region is reduced at lean condition and the ignition delay time sharply increased compared with no EGR condition.