• Title/Summary/Keyword: combustion products

Search Result 331, Processing Time 0.024 seconds

The Study on the ECO Artificial Aggregate using Coal-ash (II) (석탄회를 이용한 환경친화적 인공골재 개발 (II))

  • 조병완;김영진;황의민;안제상
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.275-280
    • /
    • 2001
  • Recycling of coal combustion by-product(Ash) are becoming more improtant in the utilization business as a result of the increased use of NOx reduction technologies at coal-fired power plants. current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns that breed negative public opinion. Since inherent characteristics make these by-product suitable for building materials, several types of artificial aggregates and construction bricks are manufactured and tested to verify the engineering properties.

  • PDF

An Experimental Study on Real Time CO Concentration Measurement of Combustion Gas in LPG/Air Flame Using TDLAS (TDLAS를 이용한 LPG/공기 화염 연소가스의 실시간 CO 농도 측정에 관한 연구)

  • So, Sunghyun;Park, Daegeun;Park, Jiyeon;Song, Aran;Jeong, Nakwon;Yoo, Miyeon;Hwang, Jungho;Lee, Changyeop
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • In order to enhance combustion efficiency and reduce atmosphere pollutants, it is essential to measure carbon monoxide (CO) concentration precisely in combustion exhaust. CO is the important gas species regarding pollutant emission and incomplete combustion because it can trade off with NOx and increase rapidly when incomplete combustion occurs. In the case of a steel annealing system, CO is generated intentionally to maintain the deoxidation atmosphere. However, it is difficult to measure the CO concentration in a combustion environment in real-time, because of unsteady combustion reactions and harsh environment. Tunable Diode Laser Absorption Spectroscopy (TDLAS), which is an optical measurement method, is highly attractive for measuring the concentration of certain gas species, temperature, velocity, and pressure in a combustion environment. TDLAS has several advantages such as sensitive, non-invasive, and fast response, and in-situ measurement capability. In this study, a combustion system is designed to control the equivalence ratio. Also, the combustion exhaust gases are produced in a Liquefied Petroleum Gas (LPG)/air flame. Measurement of CO concentration according to the change of equivalence ratio is confirmed through TDLAS method and compared with the simulation based on Voigt function. In order to measure the CO concentration without interference from other combustion products, a near-infrared laser at 4300.6 cm-1 was selected.

The Study on the Concrete Precast Block using Coal-ash Artificial Aggregate (석탄회 인공골재를 이용한 콘크리트 프리캐스트 블록 연구)

  • 조병완;박승국;김진일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.293-298
    • /
    • 2002
  • Recycling of coal combustion by-product(Ash) are becoming more improtant in the utilization business as a result of the increased use of NOx reduction technologies at coal-fired power plants. current disposal methods of these by-products create not only a loss of profit for the power industry, but also environmental concerns that breed negative public opinion. This research made concrete crecast block using coal ash artificial aggregate for environmental-friendly products and compared strength special quality of this block with existent common use brick and analyzed application possibility in situ with a reserve experiment that measured strength property and manufactured method to handle coal ash produced in Bo-ryung thermoelectric power plant.

  • PDF

A Study of physical properties and application to new products from the Heavy Residual Feul oil as Raw Materials. (양산중질유의 대책에 따른 신제품 개발실용화에 관한 연구)

  • 김주항;강호근
    • Proceedings of the Korean Professional Engineer Association Conference
    • /
    • 1984.12a
    • /
    • pp.84-91
    • /
    • 1984
  • Heavy Residual Fuel oils is a mixture of reduced crude from crude unit, bottom products from vacuum and/or catalytic cracking unit with distillate to meet the specification and generally used as Heavy Fuel Oil for large combustion engines, boilers, etc…. But this study was made to investigate Heavy Residual Fuel oils for using as industrial raw material and resulted the following possibilties as valuable raw material as well as Heavy Fuel Oil. 1) Production of straight asphalt through vacuum distillation unit. 2) Using straight asphalt from vacuum distillation unit for manufacturing of Blown Asphalts, Cut Back Asphalts, Emulsified Asphalts and Asphalt Compound, etc…. 3) Using waxy oil side streams for manufacturing of raw oil to be Lube Oil base stocks through solvent dewaxing. 4) Production of lube base oils from dewaxed raw oil through chemical treatments. 5) Manufacturing of paraffine wax from slack wax to be produced as by product of dewaxing process.

  • PDF

Fire Retardancy of Recycled Polyurethane Foam Containing Phosphorus Compounds (인계화합물을 포함한 재활용 폴리우레탄폼의 난연성)

  • Chung, Yeong-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.182-189
    • /
    • 2007
  • Used polyurethane was chemically degraded by treatments with flame retardants such as tris(3-chloropropyl) phosphate (TCPP), triethyl phosphate (TEP), and trimethyl phosphate (TMP). The structure of degraded products (DEP) was analyzed by FT-IR and P-NMR and it turned out to be phosphorus containing oligourethanes. Rigid polyurethane foam was produced by using the degraded products (DEP) as flame retardants. The flammability of recycled rigid polyurethane was investigated. The recycled polyurethane shows a reduced flammability over virgin polyurethane. In order to evaluate flame retardant properties of the recycled polyurethane foams with various amounts of DEP, the combustion parameters of the foam was measured by a cone calorimeter. Scanning electron micrograph of recycled PU shows the same uniform cell morphology as virgin PU.

Gasification Technology as Energy Utilization Platform of Biomass (바이오매스 활용 기반으로의 가스화 기술)

  • Lee, Jeung W.;Kim, Young D.;Yang, Chang W.;Kim, Kwang S.;Moon, Ji H.;Kim, Beom J.;Jeong, Jae Y.;Park, Ju H.;Park, Min S.;Lee, Uen D.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.175-176
    • /
    • 2012
  • As a carbon neutral fuel, biomass can be converted into various types of high-valued products such as synthetic natural gas (SNG), Hydrogen, Fischer - Tropsch (FT) diesel. and valuable chemicals. In order to make above mentioned products, gasificaion process is essential as energy utilization platform of solid biomass. In this study, state of the art and prospect for biomass gasification technologies are presented.

  • PDF

Properties of Products from Slow Pyrolysis of Geodae-Uksae 1 (거대억새의 저속 열분해 생성물 특성 분석)

  • Lee, Yongwoon;Eum, Pu-Reun-Byul;Jung, Jinho;Hyun, Seunghun;Park, Yong-Kwon;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.235-237
    • /
    • 2012
  • Geodae-Uksae 1 is a variety of Miscanthus sacchariflorus recently discovered in Korea. It is being mass-cultivated for use as energy crop due to its superior productivity, as high as 30 ton/ha/yr for the dry mass. This study investigates the method of producing biochar and bio-oil from the crop using slow pyrolysis. Especially, the study focused on assessing the biochar properties for its application to soil to improve soil quality and sequestrate carbon. Using an electrically heated packed bed reactor, the products of slow pyrolysis from Geodae-Uksae 1 were produced over a temperature range of $300-700^{\circ}C$ with a heating rate of $10^{\circ}C/min$. The biochar, condensable vapor (bio-oil) and residual gases were characterized for the physical and chemical properties. It was concluded that the ideal temperature for pyrolysis to produce biochar is $500^{\circ}C$.

  • PDF

Combination of Mechano-chemical Activation and SHS for HTS Material Synthesis

  • N. Korobova;Deawha Soh
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.96-99
    • /
    • 2004
  • The combination of mechano-chemical activation and Self-propagating High-temperature Synthesis (SHS) has widened the possibilities for both methods. For YBCO systems the investigation showed that a short-term mechano-chemical activation of initial powders before SHS leads to single-phase and ultra-fine products. A new technique for preparation ultra-fine high-temperature superconductors of YBCO composition with a grain size d <1 ${\mu}{\textrm}{m}$ is developed. The specific feature of the technique is formation of the YBa$_2$Cu$_3$O$_{7-{\delta}}$ crystalline lattice directly from an X-ray amorphous state arising as a result of mechanical activation of the original oxide mixture. The technique allows the stage of formation of any intermediate reaction products to be ruled out. X-ray and magnetic studies of ultra-fine high temperature superconductors (HTS) are carried out. Dimension effects associated with the microstructure peculiarities are revealed. A considerable enhancement of inter-grain critical currents is found to take place in the ultra-fine samples.fine samples.

  • PDF

[$CO_2$] Emission from Carbon of Marine Fuel Oil in New Ships (신조선에서 연료탄소로부터의 $CO_2$ 배출 특성)

  • Jang Mi-Suk;Kim Eun-Chan;Moon Il-Sung;Lee Jae-Woo;Kwon Oh-Sin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.3
    • /
    • pp.148-153
    • /
    • 2006
  • This study dealt with the measurement of exhausted gas concentration, the estimation of a combustion efficiency, and the review of IMO indexing. We concentrated on establishing the basic data to take a counterplan coping with $CO_2$ regulations. The average combustion efficiency was 98% in shop test of new engines and 96.5% in sea trial test of new ships, respectively. It would become lower for the old engine or/and ship. High combustion efficiency results in high $CO_2$ emission and low combustion efficiency results in high emission of incomplete combustion products. The efficient method reducing $CO_2$ emission without an increase in noxious air pollutants would be the development of a substitute fuel and the fuel-efficient and economical engine, and the fair play among shipping agencies in a ship speed. In reviewing of IMO indexing, it is necessary to begin by analyzing the carbon content of a marine fuel for a precise estimates.

  • PDF