• Title/Summary/Keyword: combustion model

Search Result 1,448, Processing Time 0.029 seconds

Flamelet Modeling of Turbulent Nonpremixed Flames (층류화염편 모델을 이용한 난류 비예혼합 화염장 해석)

  • Kim, Yong-Mo
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.9-16
    • /
    • 2000
  • The flamelet concept has been widely applied to numerically simulate complex phenomena occurred in nonpremixed turbulent flames last two decades, and recently broadened successfully the applicable capabilities to various combustion problems from simple laboratory flames to gas turbine engine, diesel spray combustion and partially premixed flames. The paper is focused on brief review of recently noticeable work related to flamelet modeling, which includes Lagrangian flamelet approach, RIF concept as well as steady flamelet approach. The limitation of steady flamelet assumption, the effect of transient behavior of flamelets, and the effect of spray vaporization on PDF model have been discussed.

  • PDF

A Study on Diesel Spray Combustion Modeling by Eulerian and Lagrangian Conditional Moment Closure Models (Eulerian 및 Lagrangian CMC 모델을 사용한 디젤분무연소 모델링에 관한 연구)

  • Kim, Woo Tae;Cho, Hyun Su;Huh, Kang Y.
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.195-198
    • /
    • 2012
  • Numerical simulation is performed to evaluate the conditional moment closure (CMC) models for spray development, ignition, and turbulent combustion for the Engine Combustion Network (ECN) test cases. The CMC model is implemented in the open source code, OpenFOAM, to provide conditional flame structures through the solution of Eulerian as well as Lagrangian conditional transport equations. In spite of more accurate treatment of the convective term, Eulerian CMC provides similar ignition delays and lift-off lengths with Lagrangian CMC.

  • PDF

A Multidimensional Simulation of Swirl Flow and Turbulent Combustion in a Cylinder of SI Engine (전기점화 기관의 선회 유동 및 연소에 관한 수치해석)

  • 정진은;김응서
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.9
    • /
    • pp.1744-1759
    • /
    • 1992
  • A multidimensional simulation of turbulent flow and combustion with swirl in the cylinder of SI engine is implemented to clarify the effects of swirl. present simulation employs the ICED-ALE numerical technique, the skew-upwind difference scheme, a modified k_.epsilon. turbulence model, a combustion model of Arrhenius type and turbulence-mixing-control type. First, the calculations for swirling flow in an axisymmetric cylinder are carried out. The results are compared with the experimental data to validate the numerical analysis. Second, the calculations for intake, compression and combustion processes in an axisymmetric cylinder are performed. The effects of swirl on turbulent flow and combustion are examined through the parametric study of swirl number 0.0, 0.6, 1.2 and 2.4. As a result, it is numerically shown that the turbulent kinetic energy and the swirl velocity, which are produced during the intake process, affect the combustion process.

Simulation Analysis of MILD Combustion and NOx Formation for Methane-Hydrogen Mixture Using 0D Model (0D 모델을 활용한 메탄-수소 혼소에 따른 MILD 연소 및 NOx 배출 특성 해석 연구)

  • AN, SOJEONG;PARK, JINJE;BAE, YOUN-SANG;LEE, YOUNGJAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.4
    • /
    • pp.400-412
    • /
    • 2022
  • Hydrogen with high chemical reactivity and combustion efficiency, is expected to reduce greenhouse gas and CO emission. However, there is a problem of increase in NOx emission due to hydrogen combustion. MILD combustion technology has been proposed to resolve NOx emission. In this study, the characteristics of MILD combustion and NOx formation by flue gas recirculation (KV) in CH4-H2 mixture were analyzed and predicted using 0D premixed combustion model. The ignition delay time became shorter as the hydrogen co-firing rate increased, and longer as the recirculation rate increased. For NOx emission, EINO decreased as the KV increased, but EINO increased as the hydrogen co- firing rate increased. In particular, EINO was predicted to increase significiently above 80% hydrogen. Through the pathway analysis of NO formation, it was found that the influence of N2O intermediate route and NNH route was enhanced for hydrogen co-firing.

A Study on the Particle Reaction Models for Iron Ore Pellet Induration Process Modeling (철광석 펠릿 소성 공정 모형의 입자 반응 모델 적용에 관한 연구)

  • Ahn, Hyungjun;Choi, Sangmin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.325-326
    • /
    • 2015
  • Combustion of coke grains in a pellet used to be modeled using the shrinking core model in the previous indurator simulations. This leads to the discussions about its propriety due to the fundamental assumptions of the model inconsistent with the particle characteristics. The current study presents the grain model as an improvemen, and the differently used reaction models are compared. In addition, the simulations assuming changed particle conditions are conducted to display the effects of using the grain model.

  • PDF

Combustion Instability Mechanism of a Lean Premixed Gas Turbine Combustor

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.906-913
    • /
    • 2003
  • Lean premixed combustion has been considered as one of the promising solutions for the reduction of NOx emissions from gas turbines. However, unstable combustion of lean premixed flow becomes a real challenge on the way to design a reliable, highly efficient dry low NOx gas turbine combustor. Contrary to a conventional diffusion type combustion system, characteristics of premixed combustion significantly depend on a premixing degree of combusting flow. Combustion behavior in terms of stability has been studied in a model gas turbine combustor burning natural gas and air. Incompleteness of premixing is identified as significant perturbation source for inducing unstable combustion. Application of a simple convection time lag theory can only predict instability modes but cannot determine whether instability occurs or not. Low frequency perturbations are observed at the onset of instability and believed to initiate the coupling between heat release rate and pressure fluctuations.

Bed Combustion in a Furnace Enclosure - a Model for the MSW Incinerator

  • Ryu, Chang-Kook;Shin, Dong-Hoon;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.58-64
    • /
    • 2002
  • The bed combustion in an incinerator interacts with the gas flow region through heat and mass transfer. Combined bed combustion and gas flow simulations are performed to investigate this coupled interaction for various operating conditions and furnace configurations. Radiation onto the bed from the furnace is interrelated with the combustion characteristics in the bed, and is also affected by the flow pattern in the gas flow region. Since the contribution of gaseous emission to the total radiation is significant, an adequate flow pattern in a well-designed furnace shape would lead to an increased heat influx on the bed, especially in the early stage of the waste combustion. Advancing the initiation point of the waste combustion can also reduce the size of the lower gas temperature region above the bed, which can be achieved by controlling operating conditions such as the waste feeding rate, the bed height and the primary air flow distribution.

  • PDF

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

Evaluation of Turbulent Flame Speed Model for Turbulent Premixed Combustion Flow around Bluff Body (보염기 주위의 난류 예혼합 연소에 관한 난류화염 속도 모델의 평가)

  • Park, Nam-Seob;Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • The objective of this study is to investigate the validity of the dynamic sub-grid G-equation model to a complex turbulent premixed combustion such as bluff body stabilized turbulent premixed flames for the considering of the realistic engineering application. In this study, a new turbulent flame speed model, introduced by the sub-grid turbulent diffusivity and the flame thickness, is also proposed and is compared with an usual model using sub-grid turbulent intensity and with the experimental data. The calculated results can predict the velocity and temperature of the combustion flow in good agreement with the experiment data.

Thermoacoustic Analysis Model for Combustion Instability Prediction - Part 1 : Linear Instability Analysis (연소 불안정 예측을 위한 열음향 해석 모델 - Part 1 : 선형 안정성 해석)

  • Kim, Daesik;Kim, Kyu Tae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.32-40
    • /
    • 2012
  • For predicting eigenfrequency and initial growth rate of combustion instabilities in lean premixed gas turbine combustor, linear thermoacoustic analysis model was developed in the current paper. A model combustor was selected for the model validation, which has well-defined inlet and outlet conditions and a relatively simple geometry, compared to the combustor in the previous works. Analytical linear equations for thermoacoustic waves were derived for a given combustion system. It was found that the prediction results showed a good agreement with the measurements, even though there was underestimation for instability frequencies. This underestimation was more obvious for a longer flame (i.e. wider temperature distribution) than for a shorter flame.