• Title/Summary/Keyword: combustion method

Search Result 1,731, Processing Time 0.122 seconds

Engine Friction Reduction Through Liner Rotation (회전 라이너를 이용한 엔진 마찰저감)

  • Joo Shinhyuk;Kim Myungjin;Matthews Ronald D.;Chun Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • Cylinder liner rotation is a new concept for reducing piston assembly friction in the internal combustion engine. The purpose of cylinder liner rotation is to reduce the occurrence of boundary and mixed lubrication friction in the piston assembly. This paper reports the results of experiments to quantify the potential of the rotating liner engine. A GM Quad-4 SI engine was converted to single cylinder operation and modified for cylinder liner rotation. The hot motoring method was used to compare the friction loss between the baseline engine and the rotating liner engine. Additionally, tear-down tests were used to measure the contribution of each engine component to the total friction torque. The cycle-averaged motoring torque of the RLE represents a $23\~31\%$ friction reduction compared to the baseline engine for hot motoring tests. Through tear down tests, it was found that the piston assembly friction of the baseline engine is reduced from $90\%$ at 1200 rpm to $71\%$ at 2000 rpm through liner rotation.

The Effect of Turbulence Model on the Flow Field and the Spray Characteristics (유동장 및 분무특성에 미치는 난류모델의 영향)

  • 양희천;유홍선
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.87-100
    • /
    • 1997
  • The ability of turbulence model to accurately describe the complex characteristics of the flow field and the fuel spray is of great importance in the optimum design of diesel engine. The numerical simulations of the flow field and the spray characteristics within the combustion chamber of direct injection model entgine are performed to examine the applicability of turbulence model. The turbulence models used are the RNG $\varepsilon$ model and the modified $\varepsilon$ model which included the compressibility effect due to the compression/expansion of the charges. In this study, the predicted results in the quiescent condition of direct injection model engine show reasonable trends comparing with the experimental data of spray characteristics, i. e., spray tip penetration, spray tip velocity. The results of eddy viscosity obtained using the $\varepsilon$ model in the spray region is significantly larger than that obtained using the RNG $\varepsilon$ model. The application of the RNG model seems to have some potential for the simulations of the spray characteristics, e. g., spray tip penetration, spray tip velocity, droplets distribution over the $\varepsilon$ model.

  • PDF

Study on the Development of Qualification for Fire Identification and Estimation (화재감식평가 자격개발에 관한 연구)

  • Lee, Su-Kyung;Kim, Young-Chul;Oh, Hyung-Sool;Jung, Ki-Sin;Song, Dong-Woo;Kim, Tae-Hoon
    • Fire Science and Engineering
    • /
    • v.24 no.3
    • /
    • pp.78-85
    • /
    • 2010
  • Currently, there are various institutions performing fire investigation and identification, such as fire stations and police stations as well as institutes related to fire safety, etc. And the manpower working at the institutions reaches a large number of persons. But there is no objective index on the expertise of the persons. In this paper, we suggested the examination criteria through job analysis and the enforcement method of the exam system. And we developed suitable exam subjects and exam content specifications for qualification of fire identification and estimation that investigate a fire cause, combustion, escape circumstances and fire facilities at the scene of a fire, survey the fire damage and analysis fire cause, etc. It will increase the public trust to develop national technical qualification items of the fire identification and estimation engineer.

Experimental Study on Flame Trajectory in Building External Walls Fire (건축물 외벽화재시 Flame Trajectory 추정을 위한 실험적 연구)

  • Shin, Yi-Chul;Park, Kye-won;Jeong, Jae-Gun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.79-80
    • /
    • 2016
  • In the event of a fire on the outer walls of an architectural structure, through real scale experiments with the purpose of estimating the Flame Trajectory, the behavior and risks of expanded combustion to an upper architectural compartment of the Fire Plume Ejected from an Opening according to changes in the aspect ratio of the opening were examined. The results showed that the more the heat release rate of the fire source increased, the heat capacity of the Fire Plume Ejected from the Opening also increased, and for the case of heptane when compared with methanol or ethanol, the results showed a trend for a significant amount of unburned gas to remain. The results also showed that the larger the aspect ratio was, the more likely it was for the Flame Trajectory to approach the outer walls and rise up. In each of the experiment conditions, as the flame rose from the lower part of the wall to the upper part of the wall, a steady decrease was shown for the temperature distribution. Also by quantitatively analyzing the amount of unburned gas that remained, a method to estimate the temperature of the Fire Plume Ejected from an Opening for a traverse opening was implemented.

  • PDF

High Rate Performance of Li[Co0.50Li0.17Mn0.33]O2 Cathode (Li[Co0.50Li0.17Mn0.33]O2 양극물질의 고율 충방전 특성)

  • Park Yong-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.737-743
    • /
    • 2006
  • [ $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ ] powder was prepared using a simple combustion method. specially, ratio of 2:1, 3:2, 1:1, 2:3, 1:2 was adopted as acetate source/nitrate source. The diffraction pattern of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ powder showed that this compound could be classified as hexagonal $a-NaFeO_2$ structure (space group : $R\bar{3}m$). The size of powder was less than $1{\mu}m$. Small particle size of cathode powder would give a good ionic and electronic conductivity to cathode electrode, which made of cathode powder. As the increase of nitrate source-ratio, discharge capacity of $Li[Co_{0.50}Li_{0.17}Mn_{0.33}]O_2$ at high charge-discharge rate was increased. When the ratio of acetate source/nitrate source was 1:2, discharge capacity at 10 C rate (2000 mA/g) was 180 mAh/g. It was $10{\sim}15%$ larger than that of powder, which have 2:1 as acetate source/nitrate ratio.

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Analysis of Exciting Forces for In-Line 4 Cylinders Engine (직렬 4기통 엔진의 가진력 해석)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-46
    • /
    • 2008
  • The primary objective of this study is to truly understand exciting forces of the in-line 4 cylinders engine. Exciting forces of the engine apply a source of the vehicle NVH(Noise, Vibration, Harshness). To understand exciting forces, first was governed theoretical equations for single cylinder engine. And this theoretical equations was programming using MATLAB software. To compare theoretical analysis value, was applied MSC.ADAMS software. To determined the specification of engine(2,000cc, in-line 4) was applied ADAMS/Engine module. And this specification for engine was applied ADAMS/View and MATLAB software. The geometry model for ADAMS/View analysis was produced by the 3-D design modeling software. After imported 3-D model, each rigid body was jointed suitable. Under idle speed for engine, was analysed. The results of analysis are fairly well agreed with those of three analysis method. Using MATLAB software proposed in this study, engine exciting fores can be predicted. Also using ADAMS/Engine module and ADAMS/View software, engine exciting forces can be predicted.

  • PDF

Development of a Solid Fuel Design Automation Program Using Configuration Design Method (편집 설계 방법을 이용한 고체 추진제 형상 설계 자동화 프로그램 개발)

  • Kim, Bo-Hyun;Lee, Kang-Soo;Yang, Joon-Seo;Lee, Do-Hyeong;Oh, Seok-Jin;Kwon, Hyuk-Sun;Kim, Sung-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.5
    • /
    • pp.372-381
    • /
    • 2008
  • We developed a design automation system to reduce the lead time and help engineers in designing a solid fuel, or a grain, for rocket missiles. First, we analyzed design activities and shapes of a grain, which resulted in the standard of design process and shape. We decided development process which consisted of two typical activities such as constructing master library and implementing design system. We constructed some master models for typical external shapes and core shapes of grains which were used in modeling the shape of a designing grain. Also we implemented a design automation program to use the master models according to the pre-defined design process. It can calculate some design parameters such as mass, mass center, volume and combustion area that are used in analyzing a proposed grain. Finally, we could reduce the design time dramatically and increase design quality by automating many routine and difficult works.

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

A Study on the Diesel Flame by Means of Image Analysis ofn Shadow Photographs (음영사진의 화상해석에 의한 디젤화염에 관한 연구)

  • 장영준;박호준;신본무정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1222-1233
    • /
    • 1990
  • The formation and oxidation processes of soot particles in a diesel flame were investigated with a rapid compression machine. A cloud of soot particles was successfully visualized by means of the instantaneous laser shadow photographs technique and the equivalence ratio of the soot formation zone was estimated from a measured fuel concentration distribution in a nonevaporating spray. The temporal and spatial variation of soot concentration in the flame was also correlated with the rate of heat release. Soot particles appears first in a region near the flame tip when diffusion combustion period starts, and its concentration is a maximum at about the end of injection, then decreases due to oxidation. The reason for soot being formed in a fuel lean region near the flame tip is the evaporated fuel requires time to be pyrolized as it travels through the burning fuel rich zone towards the flame tip.