• Title/Summary/Keyword: combustion calorie ratio

Search Result 6, Processing Time 0.017 seconds

An Experimental Study on the combustion calorie ratio to moxibustion (애구(艾灸)의 연소(燃燒) 구간별(區間別) 열량비(熱量比)에 대(對)한 연구(硏究))

  • Kang Ki-Weon;Nam Sang-Soo;Lee Jae-Dong;Choi Do-Young;Ahn Byoung-Choul;Park Dong-Seok;Lee Yun-Ho;Choi Yong-Tae
    • Journal of Acupuncture Research
    • /
    • v.15 no.2
    • /
    • pp.173-182
    • /
    • 1998
  • In order to evaluate calorie rate of moxa-combustion(direct moxibustion=DM, indirect moxibustion with stainless steel tube=IMS, indirect moxibustion with ginger slice=IMG), calorie rate(%) in the preheating period, heating period, retaining period, and cooling period was calculated respectively to the total combustion calories in all the periods. The result are as follow: 1. Indirect moxibustion with stainless steel tube had the highest rate with the statistical significance than other groups during the preheating period, represented statistical differences between IMS group and IMG group, and also between DM group and IMS group. 2. Indirect moxibustion with ginger slice group showed the highest rate with the statistical significance and followed by DM group and IMG group during the heating period, represented statistical difference among DM, IMS, and IMG group. 3. Direct moxibustion group had the highest rate with the statistical significance than other group during the retaining period, represented statistical difference between DM group and IMG group, and also between DM group and IMS group. 4. Indirect moxibustion with stainless steel tube had the highest rate with the statistical significance than other groups during the cooling period, represented statistical differences between IMS group and IMG group, and also between IMS group and DM group.

  • PDF

A Study for Generating Power on Operating Parameters of Powerpack utilizng Linear Engine (리니어엔진을 이용한 파워팩의 운전조건에 따른 발전출력에 관한 연구)

  • Oh, Yong-Il;Kim, Gang-Chul;Lim, Ock-Taeck
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.2
    • /
    • pp.183-190
    • /
    • 2012
  • The research shows the experiment results according to the combustion characteristics and configuration of the linear generator of powerpack for the generating power applying the 2-stroke compact linear engine. The powerpack used in this paper consists of 2-stroke linear engine, linear generator and air compressor parts. For identifying the combustion characteristics and generating power of linear engine, some parameters were varied sucha as electric load, fuel input calorie, spark timing delay and equivalence ratio. Also generating power was confirmed at each operation conditions, when the air gap length of linear generator part was changed as each 1.0 mm and 2.0 mm. During the all operations, intake air was inputted under the wide open throttle. Mass flow rate of air and fuel was changed using mass flow controller, after these were premixed by premixture device, and then premixed gas was supplied directly into each cylinder. As a result, piston frequency and combustion characteristics were different at each conditions according to parameters affecting the combustion such as fuel input calorie, resistive load, spark timing delay and equivalence ratio. Consequently, these had an effect on generating power.

A Study on the Characteristics of Spray and Engine Combustion of Diesel-DME Blended Fuel (Diesel-DME 혼합연료의 분무 및 엔진 연소특성에 관한 연구)

  • Yang, Ji Woong;Jung, Jae Hoon;Lim, Ock Taeck
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • The purpose of this study was compared the spray, combustion and emissions (NOx, CO, HC, smoke) characteristics of a typical fuel (100% Diesel, DME) and Diesel-DME blended fuel in a Constant Volume Chamber (CVC) and a single-cylinder DI diesel engine. Spray characteristics were investigated under various ambient and fuel injection pressures when the Diesel-DME blended ratio is varied. The parameters of spray sturdy were spray shape, penetration length, and spray angle. Common types of injectors having seven holes and made by Bosch were used. As of use, the typical fuel (100% Diesel, DME) and the blended fuel by mixture ratio 95:5, 90:10 (Diesel:DME) were used. The Injection pressure was fixed by 70.1MPa, when the ambient Pressure was varied 0.1, 2.6 and 5.1 MPa. The combustion experiments was conducted with single cylinder engine equipped with common rail injection system. injection pressure is 70 MPa. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions.

A Study on Recycling of Waste Tire (폐타이어 재 자원화를 위한 연구)

  • 이석일
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.38-44
    • /
    • 2000
  • Compared to other waste, waste tire has much discharge quantity and calorie. When we use waste heat from waste tire, it can be definitely better substitute energy than coal and anthracite in high oil price age. To use as a basic data for providing low cost and highly effective heating system, following conclusion was founded. Annual waste tire production was 19,596 million in 1999, Recycling ratio was almost 55% and more than 8.78 million was stored. Waste tire has lower than 1.5% sulfur contain ratio which is resource of an pollution, So it is a waste fuel which can be combustion based on current exhaust standard value without any extra SOx exclusion materials. Waste tire has 9,256Kcal/kg calorific value and it is higher than waste rubber, waste rubber, waste energy as same as B-C oil. When primary and second air quantity was 1.6, 8.0 Nm$^3$/min, dry gas production time was 270min and total combustion time was 360 min. In the SOx, NOx, HC of air pollution material density were lower than exhaust standard value at the back of cyclone and dusty than exhaust standard value without dust collector.

  • PDF

Combustion and Emission Characteristics in a High Compression Ratio Spark Ignition Engine using Off-gas from FT reaction (FT반응 Off-gas를 이용한 고압축비 전기점화 엔진의 연소 및 배기가스 특성에 관한 연구)

  • Chung, Tahn;Lee, Junsun;Lee, Yonggyu;Kim, Changup;Oh, Seungmook
    • Journal of ILASS-Korea
    • /
    • v.23 no.3
    • /
    • pp.114-121
    • /
    • 2018
  • FT process is a technology of chemical reactions that converts a mixture of carbon monoxide and hydrogen into liquid hydrocarbons. During the FT process unreacted gas, known as Off-gas which has low-calorie, is discharged. In this study, we developed an engine that utilize simulated Off-gas, and studied the characteristics of the engine. The off-gas composition is assumed to be $H_2$ 70%, CO 15%, $CO_2$ 15% respectively. Under stoichiometric air-fuel ratio, the experiment was conducted at WOT and IMEP 0.3 Mpa changing compression ratio. Ignition timing was applied with MBT timing. Maximum indicated thermal efficiency 37% was achieved at compression ratio 15 under WOT. CO, $CO_2$ and $NO_x$ were influenced by changing compression ratio, and CO emission was satisfied with the US Tier 4 standard for nonroad engine over the entire experimental conditions.

A Study on Combustion and Emission Characteristics of Diesel-DME Blended Fuels in D.I Compression-Ignition Engine (직접분사식 압축착화엔진에서 Diesel-DME 혼합연료의 연소 및 배기특성에 관한 연구)

  • Jeong, Jaehoon;Lim, Ocktaeck;Jeon, Jong Up;Lee, Sangwook;Pyo, Youngduck;Lee, Youngjae;Suh, Hocheol
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.5
    • /
    • pp.530-537
    • /
    • 2012
  • This work experimentally investigates that Diesel-DME blended fuel influences combustion characteristics and emissions (NOx, CO, HC, smoke) in a single-cylinder DI diesel engine. Diesel is used as a main fuel and DME is blended for the use of its quick evaporating characteristics. Diesel and DME are blended by the method of weight ratio. Weight ratios for Diesel and DME are 95:5 and 90:10 respectively and the both ratios have been used altogether in blended fuel. The experiments are conducted in this study single cylinder engine is equipped with common rail and injection pressure is 700 bar at 1200 rpm. The amount of injected fuels is adjusted to obtain the fixed input calorie value as 972.2 J/cycle in order to compare with the fuel conditions. DME is compressed to 15 bar by using nitrogen gas thus it can be maintained the liquid phase. In this study, different system compared others paper is common rail system, also there is combustion and emission about compared DME and diesel fuel. It is expected to be utilized about blended fuel.