• Title/Summary/Keyword: combined systems

Search Result 2,637, Processing Time 0.032 seconds

Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network (멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용)

  • Tae Jun Ha;Hee Sang Kim;Seong Uk Kang;DooHee Lee;Woo Jin Kim;Ki Won Moon;Hyun-Soo Choi;Jeong Hyun Kim;Yoon Kim;So Hyeon Bak;Sang Won Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.187-201
    • /
    • 2024
  • Osteoporosis is a major health issue globally, often remaining undetected until a fracture occurs. To facilitate early detection, deep learning (DL) models were developed to classify osteoporosis using abdominal computed tomography (CT) scans. This study was conducted using retrospectively collected data from 3,012 contrast-enhanced abdominal CT scans. The DL models developed in this study were constructed for using image data, demographic/clinical information, and multi-modality data, respectively. Patients were categorized into the normal, osteopenia, and osteoporosis groups based on their T-scores, obtained from dual-energy X-ray absorptiometry, into normal, osteopenia, and osteoporosis groups. The models showed high accuracy and effectiveness, with the combined data model performing the best, achieving an area under the receiver operating characteristic curve of 0.94 and an accuracy of 0.80. The image-based model also performed well, while the demographic data model had lower accuracy and effectiveness. In addition, the DL model was interpreted by gradient-weighted class activation mapping (Grad-CAM) to highlight clinically relevant features in the images, revealing the femoral neck as a common site for fractures. The study shows that DL can accurately identify osteoporosis stages from clinical data, indicating the potential of abdominal CT scans in early osteoporosis detection and reducing fracture risks with prompt treatment.

Study on the effect of small and medium-sized businesses being selected as suitable business types, on the franchise industry (중소기업적합업종선정이 프랜차이즈산업에 미치는 영향에 관한 연구)

  • Kang, Chang-Dong;Shin, Geon-Chel;Jang, Jae Nam
    • Journal of Distribution Research
    • /
    • v.17 no.5
    • /
    • pp.1-23
    • /
    • 2012
  • The conflict between major corporations and small and medium-sized businesses is being aggravated, the trickle down effect is not working properly, and, as the controversy surrounding the effectiveness of the business limiting system continues to swirl, the plan proposed to protect the business domain of small and medium-sized businesses, resolve polarization between these businesses and large corporations, and protect small family run stores is the suitable business type designation system for small and medium-sized businesses. The current status of carrying out this system of selecting suitable business types among small and medium-sized businesses involves receiving applications for 234 items among the suitable business types and items from small and medium-sized businesses in manufacturing, and then selecting the items of the consultative group by analyzing and investigating the actual conditions. Suitable business type designation in the service industry will involve designation with priority on business types that are experiencing social conflict. Three major classifications of the service industry, related to the livelihood of small and medium-sized businesses, will be first designated, and subsequently this will be expanded sequentially. However, there is the concern that when designated as a suitable business type or item, this will hinder the growth motive for small to medium-sized businesses, and designation all cause decrease in consumer welfare. Also it is highly likely that it will operate as a prior regulation, cause side-effects by limiting competition systematically, and also be in violation against the main regulations of the FTA system. Moreover, it is pointed out that the system does not sufficiently reflect reverse discrimination factor against large corporations. Because conflict between small to medium sized businesses and large corporations results from the expansion of corporations to the service industry, which is unrelated to their key industry, it is necessary to introduce an advanced contract method like a master franchise or local franchise system and to develop local small to medium sized businesses through a franchise system to protect these businesses and dealers. However, this method may have an effect that contributes to stronger competitiveness of small to medium sized franchise businesses by advancing their competitiveness and operational methods a step further, but also has many negative aspects. First, as revealed by the Ministry of Knowledge Economy, the franchise industry is contributing to the strengthening of competitiveness through the economy of scale by organizing existing individual proprietors and increasing the success rate of new businesses. It is also revealed to be a response measure by the government to stabilize the economy of ordinary people and is emphasized as a 'useful way' to revitalize the service industry and improve the competitiveness of individual proprietors, and has been involved in contributions to creating jobs and expanding the domestic market by providing various services to consumers. From this viewpoint, franchises fit the purpose of the suitable business type system and is not something that is against it. Second, designation as a suitable business type may decrease investment for overseas expansion, R&D, and food safety, as well negatively affect the expansion of overseas corporations that have entered the domestic market, due to the contraction and low morale of large domestic franchise corporations that have competitiveness internationally. Also because domestic franchise businesses are hard pressed to secure competitiveness with multinational overseas franchise corporations that are operating in Korea, the system may cause difficulty for domestic franchise businesses in securing international competitiveness and also may result in reverse discrimination against these overseas franchise corporations. Third, the designation of suitable business type and item can limit the opportunity of selection for consumers who have up to now used those products and can cause a negative effect that reduces consumer welfare. Also, because there is the possibility that the range of consumer selection may be reduced when a few small to medium size businesses monopolize the market, by causing reverse discrimination between these businesses, the role of determining the utility of products must be left ot the consumer not the government. Lastly, it is desirable that this is carried out with the supplementation of deficient parts in the future, because fair trade is already secured with the enforcement of the franchise trade law and the best trade standard of the Fair Trade Commission. Overlapping regulations by the suitable business type designation is an excessive restriction in the franchise industry. Now, it is necessary to establish in the domestic franchise industry an environment where a global franchise corporation, which spreads Korean culture around the world, is capable of growing, and the active support by the government is needed. Therefore, systems that do not consider the process or background of the growth of franchise businesses and harm these businesses for the sole reason of them being large corporations must be removed. The inhibition of growth to franchise enterprises may decrease the sales of franchise stores, in some cases even bankrupt them, as well as cause other problems. Therefore the suitable business type system should not hinder large corporations, and as both small dealers and small to medium size businesses both aim at improving competitiveness and combined growth, large corporations, small dealers and small to medium sized businesses, based on their mutual cooperation, should not include franchise corporations that continue business relations with them in this system.

  • PDF

A Study on the Location of Retail Trade in Kwangju-si and Its Inhabitants와 Effcient Utilization (광주시 소매업의 입지와 주민의 효율적 이용에 관한 연구)

  • ;Jeon, Kyung-sook
    • Journal of the Korean Geographical Society
    • /
    • v.30 no.1
    • /
    • pp.68-92
    • /
    • 1995
  • Recentry the structure of the retail trade have been chanaed with its environmantal changes. Some studies may be necessary on the changing process of environment and fundamental structure analyses of the retail trade. This study analyzes the location of retail trades, inhabitants' behavior in retail tredes and their desirable utilization scheme of them in Kwangju-si. Some study methods, contents and coming-out results are as follows: 1. Retail trades can be classified into independent stores, chain-stores (supermarket, voluntary chain and frenchiise system and convenience store), department stores, cooperative associations, traditional, markets mail-order marketing, automatic vending and others by service levels, selling-items, prices, managements, methods of retailing and store or nonstore type. 2. In Kwangju, the environment of retail trades is related to the consumers of population structure: chanes in consumers pattern, trends toward agings and nuclear family, increase of leisur: time and female advances to society. Rapid structural shift in retail trade has also been occurred due to these social changes. Traditionl and premodern markets until 1970s altere to supermarkets or department stores in 1980s, and various types, large enterprises and foreign capitals came into being in 1990s. 3. The locational characteristics of retail trades are resulted from the spatial analysis of the total population distribution, and from the calculation of segregation index in the light of potential demand. The densely-populated areas occurs in newly-built apartment housing complex which is distributed with a ring-shaped pattern around the old urban core. The numbers and rates of the aged over sixty in Kwangsan-gu and the circumference area of Mt.Moodeung, are larger and higher where rural elements are remarkable. A relation between population distribution and retail trade are analysed by the index of population per shop. The index of the population number per shop is lower in urban center, as a whole, being more convenient for consumers. In newly-formed apartment complex areas, on the other, the index more than 1,000 per shop, meeting not the demands for consumers. Because both the younger and the aged are numerous in these areas, the retail trade pattern pertinent to both are needed. Urban fringes including Kwangsan-gu and the vicinity of Mt.Moodeung have some problems owing to the most of population number per shop (more than 1, 500) and the most extensive as well. 4. The regional characteristic of retail trade is analyzed through the location quotient of shops by locational patterns and centerality index. Chungkum-dong is the highest-order central place in CBD. It is the core of retail trades, which has higher-ordered specialty store including three big department stores, supermarkets and large stores. Taegum-dong, Chungsu-dong, Taeui-dong, and Numun-dong that are neiahbored to Chungkum-dong fall on the second group. They have a central commercial section where large chain stores, specialty shopping streets, narrow-line retailing shops (furniture, amusement service, and gallary), supermarkets and daily markets are located. The third group is formed on the axis of state roads linking to Naju-kun, Changseong-kun, Tamyang-kun, Hwasun-kun and forme-Songjeong-eup. It is related to newly, rising apartment housing complex along a trunk road, and characterized by markets and specialty stores. The fourth group has neibourhood-shopping centers including older residential area and Songjeong-eup area with independent stores and supermarkets as main retailing functions. The last group contains inner residential area and outer part of a city including Songjeong-eup. Outer part of miscellaneous shops being occasionally found is rural rather than urban (Fig. 7). 5. The residents' behaviors using retail trade are analyzed by factors of goods and facilities. Department stores are very high level in preference for higher-order shopping-goods such as clothes for full dress in view of both diversity and quality of goods(28.9%). But they have severe traffic congestions, and high competitions for market ranges caused by their sma . 64.0% of respondents make combined purpose trips together with banking and shopping. 6. For more efficiency of retail-trading, it is necessary to induce spatial distribution policy with regard to opportunity frequency of goods selection by central place, frontier regions and age groups. Also we must consider to analyze competition among different types of retail trade and analyze the consumption behaviors of working females and younger-aged groups, in aspects of time and space. Service improvement and the rationalization of management should be accomplished in such as cooperative location (situation) must be under consideration in relations to other functions such as finance, leisure & sports, and culture centers. Various service systems such as installment, credit card and peremium ticket, new used by enterprises, must also be carried service improvement. The rationalization and professionalization in for the commercial goods are bsically requested.

  • PDF

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

Multi-Dimensional Analysis Method of Product Reviews for Market Insight (마켓 인사이트를 위한 상품 리뷰의 다차원 분석 방안)

  • Park, Jeong Hyun;Lee, Seo Ho;Lim, Gyu Jin;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.57-78
    • /
    • 2020
  • With the development of the Internet, consumers have had an opportunity to check product information easily through E-Commerce. Product reviews used in the process of purchasing goods are based on user experience, allowing consumers to engage as producers of information as well as refer to information. This can be a way to increase the efficiency of purchasing decisions from the perspective of consumers, and from the seller's point of view, it can help develop products and strengthen their competitiveness. However, it takes a lot of time and effort to understand the overall assessment and assessment dimensions of the products that I think are important in reading the vast amount of product reviews offered by E-Commerce for the products consumers want to compare. This is because product reviews are unstructured information and it is difficult to read sentiment of reviews and assessment dimension immediately. For example, consumers who want to purchase a laptop would like to check the assessment of comparative products at each dimension, such as performance, weight, delivery, speed, and design. Therefore, in this paper, we would like to propose a method to automatically generate multi-dimensional product assessment scores in product reviews that we would like to compare. The methods presented in this study consist largely of two phases. One is the pre-preparation phase and the second is the individual product scoring phase. In the pre-preparation phase, a dimensioned classification model and a sentiment analysis model are created based on a review of the large category product group review. By combining word embedding and association analysis, the dimensioned classification model complements the limitation that word embedding methods for finding relevance between dimensions and words in existing studies see only the distance of words in sentences. Sentiment analysis models generate CNN models by organizing learning data tagged with positives and negatives on a phrase unit for accurate polarity detection. Through this, the individual product scoring phase applies the models pre-prepared for the phrase unit review. Multi-dimensional assessment scores can be obtained by aggregating them by assessment dimension according to the proportion of reviews organized like this, which are grouped among those that are judged to describe a specific dimension for each phrase. In the experiment of this paper, approximately 260,000 reviews of the large category product group are collected to form a dimensioned classification model and a sentiment analysis model. In addition, reviews of the laptops of S and L companies selling at E-Commerce are collected and used as experimental data, respectively. The dimensioned classification model classified individual product reviews broken down into phrases into six assessment dimensions and combined the existing word embedding method with an association analysis indicating frequency between words and dimensions. As a result of combining word embedding and association analysis, the accuracy of the model increased by 13.7%. The sentiment analysis models could be seen to closely analyze the assessment when they were taught in a phrase unit rather than in sentences. As a result, it was confirmed that the accuracy was 29.4% higher than the sentence-based model. Through this study, both sellers and consumers can expect efficient decision making in purchasing and product development, given that they can make multi-dimensional comparisons of products. In addition, text reviews, which are unstructured data, were transformed into objective values such as frequency and morpheme, and they were analysed together using word embedding and association analysis to improve the objectivity aspects of more precise multi-dimensional analysis and research. This will be an attractive analysis model in terms of not only enabling more effective service deployment during the evolving E-Commerce market and fierce competition, but also satisfying both customers.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.

A Comparative Study of Domestic and International regulation on Mixed-fleet Flying of Flight crew (운항승무원의 항공기 2개 형식 운항관련 국내외 기준 비교 연구)

  • Lee, Koo-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.403-425
    • /
    • 2015
  • The Chicago Convention and Annexes have become the basis of aviation safety regulations for every contracting state. Generally, the State's aviation safety regulations refer to the Standards and Recommended Practices(SARPs) provided in the Annexes of the Chicago Convention. In order to properly reflect international aviation safety regulations, constant studies of the aviation fields are of paramount importance. This Paper is intended to identify the main differences between korean and foreign regulation and suggest a few amendment proposals on Mixed-fleet Flying(at or more two aircraft type operation) of flight crew. Comparing with these regulations, the korean regulations and implementations have some insufficiency points. I suggest some amendment proposals of korean regulations concerning Mixed-fleet Flying that flight crew operate aircraft of different types. Basically an operator shall not assign a pilot-in-command or a co-pilot to operate at the flight controls of a type of airplane during take-off and landing unless that pilot has operated the flight controls during at least three take-offs and landings within the preceding 90 days on the same type of airplane or in a flight simulator. Also, flight crew members are familiarized with the significant differences in equipment and/or procedures between concurrently operated types. An operator shall ensure that piloting technique and the ability to execute emergency procedures is checked in such a way as to demonstrate the pilot's competence on each type or variant of a type of airplane. Proficiency check shall be performed periodically. When an operator schedules flight crew on different types of airplanes with similar characteristics in terms of operating procedures, systems and handling, the State shall decide the requirements for each type of airplane can be combined. In conclusion, it is necessary for flight crew members to remain concurrently qualified to operate multiple types. The operator shall have a program to include, as a minimum, required differences training between types and qualification to maintain currency on each type. If the Operator utilizes flight crew members to concurrently operate aircraft of different types, the operator shall have qualification processes approved or accepted by the State. If applicable, the qualification curriculum as defined in the operator's Advanced Qualification Program could be applied. Flight crew members are familiarized with the significant differences in equipment and/or procedures between concurrently operated types. The difference among different types of airpcrafts decrease and standards for these airpcrafts can be applied increasingly because function and performance have been improved by aircraft manufacture company in accordance to basic aircraft system in terms of developing new aircrafts for flight standard procedure and safety of flight. Also, it becomes more necessary for flight crews to control multi aircraft types due to various aviation business and activation of leisure business. Nevertheless, in terms of flight crew training and qualification program, there are no regulations in Korea to be applied to new aircraft types differently in accordance with different levels. In addition, it has no choice different programs based on different levels because there are not provisions to restrict or limit and specific standards to operate at or more than two aircraft types for flight safety. Therefore the aviation authority introduce Flight Standardization and/or Operational Evaluation Board in order to analysis differences among aircraft types. In addition to that, the aviation authority should also improve standard flight evaluation and qualification system among different aircraft types for flight crews to apply reasonable training and qualification efficiently. For all the issue mentioned above, I have studied the ICAO SARPs and some state's regulation concerning operating aircraft of different types(Mixed-fleet flying), and suggested some proposals on the different aircraft type operation as an example of comprehensive problem solving. I hope that this paper is 1) to help understanding about the international issue, 2) to help the improvement of korean aviation regulations, 3) to help compliance with international standards and to contribute to the promotion of aviation safety, in addition.