• Title/Summary/Keyword: combined systems

Search Result 2,637, Processing Time 0.028 seconds

An N-Channel Stop and Wait ARQ based on Selective Packet Delay Strategy in HSDPA Systems (HSDPA 시스템에서 선택적 지연 기반의 N-채널 SAW ARQ)

  • Park Hyung-Ju;Lim Jae-sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.896-905
    • /
    • 2005
  • In this paper, we propose a SPD(Selective Packet Delay) scheme to improve the performance of High-Speed Downlink Shared Channel(HS-DSCH) employing N-Channel Stop and Wait retransmission scheme in High Speed Downlink Packet Access(HSDPA) system. The proposed SPD coordinates packet transmissions according to the channel condition. When the channel condition is bad, packet transmission is forcedly delayed, and the designated time slot is set over to other users in good channel condition. Hence, the SPD is able to reduce the average transmission delay for packet transmission under the burst error environments. In addition, we propose two packet scheduling schemes called SPD-LDPF(Long Delayed Packet First) and SPD-DCRR(Deficit Compensated Round Robin) that are effectively combined with the SPD scheme. Simulation results show that the proposed scheme has better performance in terms of delay, throughput and fairness.

Economics Analysis of Photovoltaic Power Generation Linked with Green Roof in Consideration of Seoul Solar Map-based RPS (서울시 햇빛지도 기반의 RPS제도를 고려한 옥상녹화 연계 태양광발전 시스템의 경제성 분석)

  • Kim, Tae-Han;Lee, So-Dam;Park, Jeong-Hyeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.77-82
    • /
    • 2017
  • In power supply systems for urban areas, issues such as a progressive tax have escalated recently. In this regard, photovoltaic power generation, which is appraised as an alternative power generation system, is drawing attention increasingly for its high stability and applicability to existing infrastructure. This study assessed the realistic feasibility of photovoltaic power generation and also analyzed the economic benefits expected when it is linked with green roof, which is likely to promote ecological functions in urban areas, based on the Seoul solar map, RPS, and actual monitoring data. The economics analysis of 30kW photovoltaic power generation applied with the monthly average horizontal solar radiation of six grades in the Seoul solar map showed that positive NPV was up to grade 4, while grade 5 or poorer showed negative NPV and indicated that it is difficult to assure appropriate feasibility. Compared with non-afforestation, when green roof was applied, monthly average power improvement efficiency was 7.2% at highest and 3.7% at lowest based on yearly actual monitoring data. The annual average was 5.3%, and the efficiency was high relatively in summer, including September and November. As for the economic benefits expected when 30kw photovoltaic power generation is combined with green roof based on the average horizontal solar radiation of grade 1 in the Seoul solar map, SP has improved 0.2 years to 7.4 years, and EP has improved 0.5 years to 8.3 years.

Development of TDMA-Based Protocol for Safety Networks in Nuclear Power Plants (원전 안전통신망을 위한 TDMA 기반의 프로토콜 개발)

  • Kim, Dong-Hoon;Park, Sung-Woo;Kim, Jung-Hun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.7
    • /
    • pp.303-312
    • /
    • 2006
  • This paper proposes the architecture and protocol of a data communication network for the safety system in nuclear power plants. First, we establish four design criteria with respect to determinability, reliability, separation and isolation, and verification/validation. Next we construct the architecture of the safety network for the following systems: PPS (Plant Protection System), ESF-CCS (Engineered Safety Features-Component Control System) and CPCS (Core Protection Calculator System). The safety network consists of 12 sub-networks and takes the form of a hierarchical star. Among 163 communication nodes are about 1600 origin-destination (OD) pairs created on their traffic demands. The OD pairs are allowed to exchange data only during the pre-assigned time slots. Finally, the communication protocol is designed in consideration of design factors for the safety network. The design factors include a network topology of star, fiber-optic transmission media, synchronous data transfer mode, point-to-point link configuration, and a periodic transmission schedule etc. The resulting protocol is the modification of IEEE 802.15.4 (LR-WPAN) MAC combined with IEEE 802.3 (Fast Ethernet) PHY. The MAC layer of IEEE 802.15.4 is simplified by eliminating some unnecessary (unctions. Most importantly, the optional TDMA-like scheme called the guaranteed time slot (GTS) is changed to be mandatory to guarantee the periodic data transfer. The proposed protocol is formally specified using the SDL. By performing simulations and validations using Telelogic Tau SDL Suite, we find that the proposed safety protocol fits well with the characteristics and the requirements of the safety system in nuclear power plants.

Co-specification for control and dataflow based on the codesign backplane (백플레인에 기반한 제어 부분과 데이터 처리 부분의 통합적 명세)

  • Kim, Do-Hyung;Ha, Soon-Hoi
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.12
    • /
    • pp.36-46
    • /
    • 1999
  • As the requirements of embedded systems increase, the design complexity of the system becomes higher. The formal design methodology is required which supports well-balanced specification for control and dataflow to design a complex system. In this paper, control modules and function modules are separately described with FSMs and dataflow graphs respectively, and integrated into a system specification via inter-model communications. In previous approaches, the system could not be verified until control modules and dataflow modules are combined at the final design stage. However our approach enables us to design each part as the proper model of computation at early stage, and to verify the compositions and to co-synthesize the system effectively in the same framework. Especially this paper focuses on the communication protocols between control and dataflow models. Preliminary experiments show practicality of the proposed technique.

  • PDF

A Study on the Construction of Housing Geospatial Information for the Integrated use of Housing Supply Model (주택공급모형과의 연계활용을 위한 주택공간정보 구축방안 연구)

  • Choi, Jun Young;Kim, Taek Geun
    • Spatial Information Research
    • /
    • v.20 no.6
    • /
    • pp.1-11
    • /
    • 2012
  • To solve the housing supply problems which are combined with economic, social, environmental and urban spatial structural aspects, it is needed to analyze housing supply based on the analysis model. This study aims to draw the construction of the housing geospatial information for housing supply model. For these purposes, we construct the housing geospatial information and draw case studies on information utilization based on the precedent studies and relevant systems about housing geospatial information. From the result, we construct the geospatial information according to spatial unit and draw standardization of connected information between housing supply information and housing geospatial information. Also we found that it is essential to use a building and parcel level housing geospatial information for housing supply. In the future, it will be needed to construct the housing supply information from qualitative aspect for dwelling and to establish a utilization strategy.

Urban Planning in Post-COVID-19 Era: Humanist Perspective Revisited (포스트코로나 시대의 도시계획: 휴머니즘 시각의 재고)

  • Park, Hye Jung
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.247-261
    • /
    • 2020
  • COVID-19 is wreaking havoc on a grand scale while causing us great confusion. Due to this unpredictable situation, we are concerned with public health, political, and economic issues as well as the great transformation of human civilization. Among the various discussions, this study asks questions about the future direction of urban planning in the context of the era of uncertainty and the posthuman era in which modern artificial intelligence and technological systems are combined with human life. How can we plan our cities and regions in the future, that is to say, what is the normative basis of our planning? And what can we consider as the first step in concrete practice? To find answers to these questions, this study sheds light on the philosophical review of Martha Nussbaum's compassion and capabilities approach. In line with her perspective, by introducing the humanist planning that has been discussed recently in the academic field, we could depict our cities of tomorrow that we should pursue in post-COVID-19 era.

Analysis of Spatial Modulation MIMO Reception Performance for UHDTV Broadcasting (UHDTV 방송을 위한 공간 변조 다중 안테나 시스템 수신 성능 분석)

  • Park, Myung Chul;Han, Dong Seog
    • Journal of Broadcast Engineering
    • /
    • v.20 no.6
    • /
    • pp.837-847
    • /
    • 2015
  • In this paper, the reception performance of spatial modulation multiple-output multiple-input (MIMO) is analyzed for high speed terrestrial broadcasting. The MIMO scheme is required to reduce the inter symbol interference (ISI) and spatial correlation. The spatial modulation scheme solves the problem of ISI, but the spatial correlation degrades the reception performance of SM scheme. The space-time block coded spatial modulation (STBC-SM) is combined the SM system with space-time block code (STBC) for reducing the effects of the spatial correlation. However, the STBC-SM scheme degrades the spectral efficiency by transmitting same data in the two symbol period. The double space-time transmit diversity with spatial modulation (DSTTD-SM) scheme transmits the data with full antenna combination. To adapt these SM MIMO systems into the terrestrial broadcasting system, the reception performance is analyzed using computer simulation in SUI channel environments.

Lemanea manipurensis sp. nov. (Batrachospermales), a freshwater red algal species from North-East India

  • Ganesan, E.K.;West, J.A.;Zuccarello, G.C.;de Goer, S. Loiseaux;Rout, J.
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • A new macroscopic riverine red algal species, Lemanea manipurensis sp. nov. (Batrachospermales) is described from Manipur in northeast India. It has a sparsely branched, pseudoparenchymatous thallus with a single, central axial filament that lacks cortical filaments. Spermatangia occur generally in isolated, low and indistinct patches or form an almost continuous ring around the axis. Carposporophytes project into the hollow thallus cavity without an ostiole. The most striking morphological feature is the carposporophyte with very short gonimoblast filaments having cylindrical, narrow and sparsely branched sterile filaments, the terminal cell of each branch with a single, large, elongate carpospore. The widely distributed L. fluviatilis has spherical carpospores in long branched chains. Phylogenetic analysis of rbcL sequence data and comparison with other Batrachospermales clearly show that our specimens do not align with other species of Lemanea and Paralemanea investigated thus far. Five specific names attributed in previous literature (1973-2014) to Lemanea from Manipur, L. australis, L. catenata, L. fluviatilis, L. mamillosa, and L. torulosa are rejected until critical anatomical and molecular evidence is available for specimens from the Manipur river systems. Taxa referable to Paralemanea were not confirmed for India in this study. In view of the high demand for food and medical uses of L. manipurensis in northeast India, conservation measures are needed for its long term survival. The present paper constitutes the first combined morphological / molecular study on a freshwater red alga from India.

Grouting compactness monitoring of concrete-filled steel tube arch bridge model using piezoceramic-based transducers

  • Feng, Qian;Kong, Qingzhao;Tan, Jie;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.175-180
    • /
    • 2017
  • The load-carrying capacity and structural behavior of concrete-filled steel tube (CFST) structures is highly influenced by the grouting compactness in the steel tube. Due to the invisibility of the grout in the steel tube, monitoring of the grouting progress in such a structure is still a challenge. This paper develops an active sensing approach with combined piezoceramic-based smart aggregates (SA) and piezoceramic patches to monitor the grouting compactness of CFST bridge structure. A small-scale steel specimen was designed and fabricated to simulate CFST bridge structure in this research. Before casting, four SAs and two piezoceramic patches were installed in the pre-determined locations of the specimen. In the active sensing approach, selected SAs were utilized as actuators to generate designed stress waves, which were detected by other SAs or piezoceramic patch sensors. Since concrete functions as a wave conduit, the stress wave response can be only detected when the wave path between the actuator and the sensor is filled with concrete. For the sake of monitoring the grouting progress, the steel tube specimen was grouted in four stages, and each stage held three days for cement drying. Experimental results show that the received sensor signals in time domain clearly indicate the change of the signal amplitude before and after the wave path is filled with concrete. Further, a wavelet packet-based energy index matrix (WPEIM) was developed to compute signal energy of the received signals. The computed signal energies of the sensors shown in the WPEIM demonstrate the feasibility of the proposed method in the monitoring of the grouting progress.

An efficient hybrid TLBO-PSO-ANN for fast damage identification in steel beam structures using IGA

  • Khatir, S.;Khatir, T.;Boutchicha, D.;Le Thanh, C.;Tran-Ngoc, H.;Bui, T.Q.;Capozucca, R.;Abdel-Wahab, M.
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • The existence of damages in structures causes changes in the physical properties by reducing the modal parameters. In this paper, we develop a two-stages approach based on normalized Modal Strain Energy Damage Indicator (nMSEDI) for quick applications to predict the location of damage. A two-dimensional IsoGeometric Analysis (2D-IGA), Machine Learning Algorithm (MLA) and optimization techniques are combined to create a new tool. In the first stage, we introduce a modified damage identification technique based on frequencies using nMSEDI to locate the potential of damaged elements. In the second stage, after eliminating the healthy elements, the damage index values from nMSEDI are considered as input in the damage quantification algorithm. The hybrid of Teaching-Learning-Based Optimization (TLBO) with Artificial Neural Network (ANN) and Particle Swarm Optimization (PSO) are used along with nMSEDI. The objective of TLBO is to estimate the parameters of PSO-ANN to find a good training based on actual damage and estimated damage. The IGA model is updated using experimental results based on stiffness and mass matrix using the difference between calculated and measured frequencies as objective function. The feasibility and efficiency of nMSEDI-PSO-ANN after finding the best parameters by TLBO are demonstrated through the comparison with nMSEDI-IGA for different scenarios. The result of the analyses indicates that the proposed approach can be used to determine correctly the severity of damage in beam structures.