Recent years, due to the direct or indirect damages caused by meteorological disasters more and more attention have been paid to natural disasters. At same time, diversified and multi-sensory interactive meteorological services is increasingly demanded. In this study, novel interactive meteorological service was compared with the traditional communication methods. Combining with case studies and systems creation, a virtual reality weather simulation framework was proposed, and a realistic virtual game environment providing real-time and historical weather information was created. The primary goal of this study is to build a weather display cabinet game system by using virtual reality technology, and promoting public's understanding of the principles of weather changes. With the interactive games in realistic scenarios, public's awareness for disasters prevention could be promoted. It is helping to change public's traditional understanding of meteorological theories, and will provide a more convenient way for the public to explore more effective weather forecasts. The simulation system is supported by VR technology. It was combined with Leap Motion interactive equipment to make popularization games for weather science. T-test data analysis showed that the application of VR technology in weather games has strong operability and interactivity.
In the non-orthogonal multiple access (NOMA) system, multiple user signals on the single carrier are superimposed in a non-orthogonal manner, which results in the interference between non-orthogonal users and noise interference in the channel. To solve this problem, an improved algorithm combining regularized zero-forcing (RZF) precoding with minimum mean square error-serial interference cancellation (MMSE-SIC) detection is proposed. The algorithm uses RZF precoding combined with successive over-relaxation (SOR) method at the base station to preprocess the source signal, which can balance the effects of non-orthogonal inter-user interference and noise interference, and generate a precoded signal suitable for transmission in the channel. At the receiver, the MMSE-SIC detection algorithm is used to further eliminate the interference in the signal for the received superimposed signal, and reduce the calculation complexity through the QR decomposition of the matrix. The simulation results show that the proposed joint detection algorithm has good applicability to eliminate the interference of non-orthogonal users, and it has low complexity and fast convergence speed. Compared with other traditional method, the improved method has lower error rate under different signal-to-interference and noise ratio (SINR).
In the task of continuous dimension emotion recognition, the parts that highlight the emotional expression are not the same in each mode, and the influences of different modes on the emotional state is also different. Therefore, this paper studies the fusion of the two most important modes in emotional recognition (voice and visual expression), and proposes a two-mode dual-modal emotion recognition method combined with the attention mechanism of the improved AlexNet network. After a simple preprocessing of the audio signal and the video signal, respectively, the first step is to use the prior knowledge to realize the extraction of audio characteristics. Then, facial expression features are extracted by the improved AlexNet network. Finally, the multimodal attention mechanism is used to fuse facial expression features and audio features, and the improved loss function is used to optimize the modal missing problem, so as to improve the robustness of the model and the performance of emotion recognition. The experimental results show that the concordance coefficient of the proposed model in the two dimensions of arousal and valence (concordance correlation coefficient) were 0.729 and 0.718, respectively, which are superior to several comparative algorithms.
Due to various ICT Technology innovations and Digital Transformation, the Internet of Things(IoT) environment is increasingly requiring intelligence, decentralization, and automated service, especially an advanced and stable smart service environment in the Industrial Internet of Things(IIoT) where communication network(5G), data analysis and artificial intelligence(AI), and digital twin technology are combined. In this study, we propose IIoT Edge middleware systems for flexible interface with heterogeneous devices such as facilities and sensors at various industrial sites and for quick and stable data collection and processing.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.9
/
pp.3421-3443
/
2021
A data hiding method based on integer factorization via e-books in the EPUB format with XHTML and CSS files for copyright protection is proposed. Firstly, a fixed number m of leading bits in a message are transformed into an integer which is then factorized to yield k results. One of the k factorizations is chosen according to the decimal value of a number n of the subsequent message bits with n being decided as the binary logarithm of k. Next, the chosen factorization, denoted as a × b, is utilized to create a combined use of the
and elements in the XHTML files to embed the m + n message bits by including into the two elements a class selector named according to the value of a as well as a text segment with b characters. The class selector is created by the use of a CSS pseudo-element. The resulting web pages are of no visual difference from the original, achieving a steganographic effect. The security of the embedded message is also considered by randomizing the message bits before they are embedded. Good experimental results and comparisons with exiting methods show the feasibility of the proposed method for copyright protection of e-books.
Research on climate change and global warming on the power generation systems are rapidly increasing because of the Importance of the sustainable energy supply, thus the electricity supply since its growing share, in the end, uses energy supply. However, some researchers conducted this field, but many research gaps are not mentioned and filled in this field's literature since the lack of general statements and the quantitative models and formulation of the issue. In this research, an exergy-based model is implemented to model a set of six power generation technologies (combined cycle, gas turbine, nuclear plant, solar PV, and wind turbine) and use this model to simulate each technology's responses to climate change impacts. Finally, using these responses to define and calculate a formulation for the relationship between the system's energy performance in different environmental situations and a dimensionless index to quantize each power technology's reliability against the climate change impacts called the Pahlev reliability index (P-index) of the power technology. The results have shown that solar and nuclear technologies are the most, and wind turbines are the least reliable power generation technologies.
This study produces electroconductive polycaprolactone (PCL)-based film with different amounts of graphene (G) through electrospinning, and the characteristics of the produced G/PCL composites are investigated. The G/PCL results are analyzed by comparing them with those obtained using pure PCL electrospun film as a control. The morphology of electrospun material is analyzed through scanning electron microscopy and transmission electron microscopy. Mechanical and electrical properties are also evaluated. Composites containing 1 % graphene have the highest elongation rate, and 5 % samples have the highest strength and elasticity. Graphene contents > 25 % show electro-conductivity, which level improves with increase of graphene content. Biological characteristics of G/PCL composites are assessed through behavioral analysis of neural cell attachment and proliferation. Cell experiments reveal that compositions < 50 % show slightly reduced cell viability. Moreover, graphene combinations facilitated cell proliferation compared to pure PCL. These results confirm that a 25 % G/PCL composition is best for application to systems that introduce external stimuli such as electric fields and electrodes to lead to synergistic efficiency of tissue regeneration.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.2
/
pp.522-539
/
2021
In order to solve the problems of the existing audio fingerprint method when extracting audio fingerprints from long speech segments, such as too large fingerprint dimension, poor robustness, and low retrieval accuracy and efficiency, a robust audio fingerprint retrieval method based on feature dimension reduction and feature combination is proposed. Firstly, the Mel-frequency cepstral coefficient (MFCC) and linear prediction cepstrum coefficient (LPCC) of the original speech are extracted respectively, and the MFCC feature matrix and LPCC feature matrix are combined. Secondly, the feature dimension reduction method based on information entropy is used for column dimension reduction, and the feature matrix after dimension reduction is used for row dimension reduction based on energy feature dimension reduction method. Finally, the audio fingerprint is constructed by using the feature combination matrix after dimension reduction. When speech's user retrieval, the normalized Hamming distance algorithm is used for matching retrieval. Experiment results show that the proposed method has smaller audio fingerprint dimension and better robustness for long speech segments, and has higher retrieval efficiency while maintaining a higher recall rate and precision rate.
Naeem, Hamad;Guo, Bing;Ullah, Farhan;Naeem, Muhammad Rashid
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.7
/
pp.3756-3777
/
2019
Recent internet development is helping malware researchers to generate malicious code variants through automated tools. Due to this reason, the number of malicious variants is increasing day by day. Consequently, the performance improvement in malware analysis is the critical requirement to stop the rapid expansion of malware. The existing research proved that the similarities among malware variants could be used for detection and family classification. In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed that converted malware binary into a grayscale image. Further, malicious features extracted from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, these features used to identify the relevant family of malware variant. CP-MVCS reduced computational time and improved classification accuracy by using CSGM feature description along machine learning classification. The experiment performed on four publically available datasets of Windows OS and Android OS. The experimental results showed that the computation time and malware classification accuracy of CP-MVCS was higher than traditional methods. The evaluation also showed that CP-MVCS was not only differentiated families of malware variants but also identified both malware and benign samples in mix fashion efficiently.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.7
/
pp.3654-3670
/
2019
This paper proposes an Image Texture Median Filter (ITMF) to analyze and detect Android malware on Drebin datasets. We design a model of "ITMF" combined with Image Processing of Median Filter (MF) to reflect the similarity of the malware binary file block. At the same time, using the MAEVS (Malware Activity Embedding in Vector Space) to reflect the potential dynamic activity of malware. In order to ensure the improvement of the classification accuracy, the above-mentioned features(ITMF feature and MAEVS feature)are studied to train Restricted Boltzmann Machine (RBM) and Back Propagation (BP). The experimental results show that the model has an average accuracy rate of 95.43% with few false alarms. to Android malicious code, which is significantly higher than 95.2% of without ITMF, 93.8% of shallow machine learning model SVM, 94.8% of KNN, 94.6% of ANN.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.