• Title/Summary/Keyword: combined systems

Search Result 2,640, Processing Time 0.032 seconds

Analysing the Combined Kerberos Timed Authentication Protocol and Frequent Key Renewal Using CSP and Rank Functions

  • Kirsal-Ever, Yoney;Eneh, Agozie;Gemikonakli, Orhan;Mostarda, Leonardo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.12
    • /
    • pp.4604-4623
    • /
    • 2014
  • Authentication mechanisms coupled with strong encryption techniques are used for network security purposes; however, given sufficient time, well-equipped intruders are successful for compromising system security. The authentication protocols often fail when they are analysed critically. Formal approaches have emerged to analyse protocol failures. In this study, Communicating Sequential Processes (CSP) which is an abstract language designed especially for the description of communication patterns is employed. Rank functions are also used for verification and analysis which are helpful to establish that some critical information is not available to the intruder. In order to establish this, by assigning a value or rank to each critical information, it is shown that all the critical information that can be generated within the network have a particular characterizing property. This paper presents an application of rank functions approach to an authentication protocol that combines delaying the decryption process with timed authentication while keys are dynamically renewed under pseudo-secure situations. The analysis and verification of authentication properties and results are presented and discussed.

IKPCA-ELM-based Intrusion Detection Method

  • Wang, Hui;Wang, Chengjie;Shen, Zihao;Lin, Dengwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.3076-3092
    • /
    • 2020
  • An IKPCA-ELM-based intrusion detection method is developed to address the problem of the low accuracy and slow speed of intrusion detection caused by redundancies and high dimensions of data in the network. First, in order to reduce the effects of uneven sample distribution and sample attribute differences on the extraction of KPCA features, the sample attribute mean and mean square error are introduced into the Gaussian radial basis function and polynomial kernel function respectively, and the two improved kernel functions are combined to construct a hybrid kernel function. Second, an improved particle swarm optimization (IPSO) algorithm is proposed to determine the optimal hybrid kernel function for improved kernel principal component analysis (IKPCA). Finally, IKPCA is conducted to complete feature extraction, and an extreme learning machine (ELM) is applied to classify common attack type detection. The experimental results demonstrate the effectiveness of the constructed hybrid kernel function. Compared with other intrusion detection methods, IKPCA-ELM not only ensures high accuracy rates, but also reduces the detection time and false alarm rate, especially reducing the false alarm rate of small sample attacks.

A Blind Watermarking Scheme Using Singular Vector Based On DWT/RDWT/SVD (DWT/RDWT/SVD에 기반한 특이벡터를 사용한 블라인드 워터마킹 방안)

  • Luong, Ngoc Thuy Dung;Sohn, Won
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.149-156
    • /
    • 2016
  • We proposed a blind watermarking scheme using singular vectors based on Discrete Wavelet Transform (DWT) and Redundant Discrete Wavelet Transform (RDWT) combined with Singular Value Decomposition (SVD) for copyright protection application. We replaced the 1st left and right singular vectors decomposed from cover image with the corresponding ones from watermark image to overcome the false-positive problem in current watermark systems using SVD. The proposed scheme realized the watermarking system without a false positive problem, and shows high fidelity and robustness.

SVM-based Drone Sound Recognition using the Combination of HLA and WPT Techniques in Practical Noisy Environment

  • He, Yujing;Ahmad, Ishtiaq;Shi, Lin;Chang, KyungHi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.5078-5094
    • /
    • 2019
  • In recent years, the development of drone technologies has promoted the widespread commercial application of drones. However, the ability of drone to carry explosives and other destructive materials may bring serious threats to public safety. In order to reduce these threats from illegal drones, acoustic feature extraction and classification technologies are introduced for drone sound identification. In this paper, we introduce the acoustic feature vector extraction method of harmonic line association (HLA), and subband power feature extraction based on wavelet packet transform (WPT). We propose a feature vector extraction method based on combined HLA and WPT to extract more sophisticated characteristics of sound. Moreover, to identify drone sounds, support vector machine (SVM) classification with the optimized parameter by genetic algorithm (GA) is employed based on the extracted feature vector. Four drones' sounds and other kinds of sounds existing in outdoor environment are used to evaluate the performance of the proposed method. The experimental results show that with the proposed method, identification probability can achieve up to 100 % in trials, and robustness against noise is also significantly improved.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

Analysis of Optimized Aggregation Timing in Wireless Sensor Networks

  • Lee, Dong-Wook;Kim, Jai-Hoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.209-218
    • /
    • 2009
  • In a wireless sensor network(WSN) each sensor node deals with numerous sensing data elements. For the sake of energy efficiency and network lifetime, sensing data must be handled effectively. A technique used for this is data aggregation. Sending/receiving data involves numerous steps such as MAC layer control packet handshakes and route path setup, and these steps consume energy. Because these steps are involved in all data communication, the total cost increases are related to the counts of data sent/received. Therefore, many studies have proposed sending combined data, which is known as data aggregation. Very effective methods to aggregate sensing data have been suggested, but there is no means of deciding how long the sensor node should wait for aggregation. This is a very important issue, because the wait time affects the total communication cost and data reliability. There are two types of data aggregation; the data counting method and the time waiting method. However, each has weaknesses in terms of the delay. A hybrid method can be adopted to alleviate these problems. But, it cannot provide an optimal point of aggregation. In this paper, we suggest a stochastic-based data aggregation scheme, which provides the cost(in terms of communication and delay) optimal aggregation point. We present numerical analysis and results.

Recognizing F5-like stego images from multi-class JPEG stego images

  • Lu, Jicang;Liu, Fenlin;Luo, Xiangyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4153-4169
    • /
    • 2014
  • To recognize F5-like (such as F5 and nsF5) steganographic algorithm from multi-class stego images, a recognition algorithm based on the identifiable statistical feature (IDSF) of F5-like steganography is proposed in this paper. First, this paper analyzes the special modification ways of F5-like steganography to image data, as well as the special changes of statistical properties of image data caused by the modifications. And then, by constructing appropriate feature extraction sources, the IDSF of F5-like steganography distinguished from others is extracted. Lastly, based on the extracted IDSFs and combined with the training of SVM (Support Vector Machine) classifier, a recognition algorithm is presented to recognize F5-like stego images from images set consisting of a large number of multi-class stego images. A series of experimental results based on the detection of five types of typical JPEG steganography (namely F5, nsF5, JSteg, Steghide and Outguess) indicate that, the proposed algorithm can distinguish F5-like stego images reliably from multi-class stego images generated by the steganography mentioned above. Furthermore, even if the types of some detected stego images are unknown, the proposed algorithm can still recognize F5-like stego images correctly with high accuracy.

Region of Interest Detection Based on Visual Attention and Threshold Segmentation in High Spatial Resolution Remote Sensing Images

  • Zhang, Libao;Li, Hao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1843-1859
    • /
    • 2013
  • The continuous increase of the spatial resolution of remote sensing images brings great challenge to image analysis and processing. Traditional prior knowledge-based region detection and target recognition algorithms for processing high resolution remote sensing images generally employ a global searching solution, which results in prohibitive computational complexity. In this paper, a more efficient region of interest (ROI) detection algorithm based on visual attention and threshold segmentation (VA-TS) is proposed, wherein a visual attention mechanism is used to eliminate image segmentation and feature detection to the entire image. The input image is subsampled to decrease the amount of data and the discrete moment transform (DMT) feature is extracted to provide a finer description of the edges. The feature maps are combined with weights according to the amount of the "strong points" and the "salient points". A threshold segmentation strategy is employed to obtain more accurate region of interest shape information with the very low computational complexity. Experimental statistics have shown that the proposed algorithm is computational efficient and provide more visually accurate detection results. The calculation time is only about 0.7% of the traditional Itti's model.

Model for Mobile Online Video viewed on Samsung Galaxy Note 5

  • Pal, Debajyoti;Vanijja, Vajirasak
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.11
    • /
    • pp.5392-5418
    • /
    • 2017
  • The primary aim of this paper is to propose a non-linear regression based technique for mapping different network Quality of Service (QoS) factors to an integrated end-user Quality of Experience (QoE) or Mean Opinion Score (MOS) value for an online video streaming service on a mobile phone. We use six network QoS factors for finding out the user QoE. The contribution of this paper is threefold. First, we investigate the impact of the network QoS factors on the perceived video quality. Next, we perform an individual mapping of the significant network QoS parameters obtained in stage 1 to the user QoE based upon a non-linear regression method. The optimal QoS to QoE mapping function is chosen based upon a decision variable. In the final stage, we evaluate the integrated QoE of the system by taking the combined effect of all the QoS factors considered. Extensive subjective tests comprising of over 50 people across a wide variety of video contents encoded with H.265/HEVC and VP9 codec have been conducted in order to gather the actual MOS data for the purpose of QoS to QoE mapping. Our proposed hybrid model has been validated against unseen data and reveals good prediction accuracy.

Dual Exposure Fusion with Entropy-based Residual Filtering

  • Heo, Yong Seok;Lee, Soochahn;Jung, Ho Yub
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2555-2575
    • /
    • 2017
  • This paper presents a dual exposure fusion method for image enhancement. Images taken with a short exposure time usually contain a sharp structure, but they are dark and are prone to be contaminated by noise. In contrast, long-exposure images are bright and noise-free, but usually suffer from blurring artifacts. Thus, we fuse the dual exposures to generate an enhanced image that is well-exposed, noise-free, and blur-free. To this end, we present a new scale-space patch-match method to find correspondences between the short and long exposures so that proper color components can be combined within a proposed dual non-local (DNL) means framework. We also present a residual filtering method that eliminates the structure component in the estimated noise image in order to obtain a sharper and further enhanced image. To this end, the entropy is utilized to determine the proper size of the filtering window. Experimental results show that our method generates ghost-free, noise-free, and blur-free enhanced images from the short and long exposure pairs for various dynamic scenes.