• Title/Summary/Keyword: combined exposure conditions

Search Result 42, Processing Time 0.021 seconds

Aging Characteristics of Carbon Fiber/Epoxy Composite Ring Specimen (탄소섬유/에폭시 복합재 링 시편의 노화 특성 평가)

  • Yoon, Sung-Ho;Oh, Jin-Oh
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.39-44
    • /
    • 2009
  • The effect of exposure times on the aging characteristics of carbon fiber/epoxy composite ring specimen was evaluated using an accelerating aging tester. Combined exposure conditions, such as temperature, moisture, and ultraviolet, were applied up to 3000 hours. Tensile properties and flexural properties including the effect of curvature were evaluated on the specimens subject to various exposure times through a material testing system. Their aging surfaces were observed through a scanning electron microscope. According to the results, tensile modulus was little affected by the exposure times. However, tensile strength, at the early stage of the exposure times, increased due to physical aging and curing reaction, but tensile strength slightly decreased due to degradation as the exposure times increased. The flexural modulus and flexural strength increased at the early stage of the exposure times, but slightly decreased as the exposure times increased. Aging surfaces of the specimens examined using the scanning electron microscope revealed a different morphology in various exposure times and provided useful information for identifying the degradation in mechanical properties of the composite subject to various exposure times.

Potential Work-related Exposure to SARS-CoV-2 by Standard Occupational Grouping Based on Pre-lockdown Working Conditions in France

  • Narges Ghoroubi;Emilie Counil;Myriam Khlat
    • Safety and Health at Work
    • /
    • v.14 no.4
    • /
    • pp.488-491
    • /
    • 2023
  • This study aims to ascertain occupations potentially at greatest risk of exposure to SARS-CoV-2 based on pre-lockdown working conditions in France. We combined two French population-based surveys documenting workplace exposures to infectious agents, face-to-face contact with the public, and working with colleagues just before the pandemic. Then, for each 87-level standard French occupational grouping, we estimated the number and percentage of the French working population reporting these occupational exposure factors, by gender, using survey weights. As much as 40% (11 million) of all workers reported at least two exposure factors. Most of the workers concerned were in the healthcare sector. However, army/police officers, firefighters, hairdressers, teachers, cultural/sports professionals, and some manual workers were also exposed. Women were overrepresented in certain occupations with potentially higher risks of exposure such as home caregivers, childminders, and hairdressers. Our gender-stratified matrix can be used to assign prelockdown work-related exposures to cohorts implemented during the pandemic.

Study on the correlation between long-term exposure tests and accelerated corrosion tests by the combined damage of salts (염해 및 복합열화에 의한 부식촉진시험과 장기폭로 시험의 상관성에 관한 연구)

  • Park, Sang Soon;Lee, Min Woo
    • Corrosion Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.214-223
    • /
    • 2014
  • Interest in the durability assessment and structural performance has increased according to an increase of concrete structures in salt damage environment recent years. Reliable way ensuring the most accelerated corrosion test is a method of performing the rebar corrosion monitoring as exposed directly to the marine test site exposure. However, long-term exposure test has a disadvantage because of a long period of time. Therefore, many studies on reinforced concrete in salt damage environments have been developed as alternatives to replace this. However, accelerated corrosion test is appropriate to evaluate the critical chlorine concentration in the short term, but only accelerated test method, is not easy to get correct answer. Accuracy of correlation acceleration test depends on the period of the degree of exposure environments. Therefore, in this study, depending on the concrete mix material, by the test was performed on the basis of the composite degradation of the salt damage, and investigate the difference of corrosion initiation time of the rebar, and indoor corrosion time of the structure, of the marine environment of the actual environments were inuestigated. The correlation coefficient was derived in the experiment. Long-term exposure test was actually conducted in consideration of the exposure conditions submerged zone, splash zone and tidal zone. The accelerated corrosion tests were carried out by immersion conditions, and by the combined deterioration due to the carbonation and accelerated corrosion due to wet and dry condition.

Effect of Combined Environmental Factors on Degradation Behavior of Carbon Fiber/Epoxy Composites (복합적인 환경인자의 영향에 따른 탄소섬유/에폭시 복합재의 열화 특성)

  • Hwang, Young-Eun;Lee, Gil-Hyung;Yoon, Sung-Ho
    • Composites Research
    • /
    • v.22 no.5
    • /
    • pp.37-42
    • /
    • 2009
  • Thermal analysis properties and chemical structure of carbon fiber/epoxy composites under environmental exposure were examined using an accelerated aging tester which can simulate real weather conditions such as temperature, moisture and ultraviolet. The composite specimens were exposed to combined environmental factors up to 3000 hours. Thermal analysis properties and chemical structure of the composites were evaluated with various exposure times through Modulated DSC and FTIR. According to the results of Modulated DSC, the glass transition temperature increased as exposure time increased due to the formation of network structures in the composites. Also endotherm peaks of enthalpy relaxation related to physical aging that can affect the properties of the composites were observed as exposure time increased. From the results of FTIR, it was found that the location of the peaks was little affected by exposure time, but the intensity of the peaks slightly decreased as exposure time increased due to the curing reaction in the epoxy group.

Neuro-fuzzy model of concrete exposed to various regimes combined with De-icing salts

  • Ghazy, Ahmed;Bassuoni, Mohamed. T.
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.649-659
    • /
    • 2018
  • Adaptive neuro-fuzzy inference systems (ANFIS) can be efficient in modelling non-linear, complex and ambiguous behavior of cement-based materials undergoing combined damage factors of different forms (physical and chemical). The current work investigates the use of ANFIS to model the behavior (time of failure (TF)) of a wide range of concrete mixtures made with different types of cement (ordinary and portland limestone cement (PLC)) without or with supplementary cementitious materials (SCMs: fly ash and nanosilica) under various exposure regimes with the most widely used chloride-based de-icing salts (individual and combined). The results show that predictions of the ANFIS model were rational and accurate, with marginal errors not exceeding 3%. In addition, sensitivity analyses of physical penetrability (magnitude of intruding chloride) of concrete, amount of aluminate and interground limestone in cement and content of portlandite in the binder showed that the predictive trends of the model had good agreement with experimental results. Thus, this model may be reliably used to project the deterioration of customized concrete mixtures exposed to such aggressive conditions.

Association with Combined Occupational Hazards Exposure and Risk of Metabolic Syndrome: A Workers' Health Examination Cohort 2012-2021

  • Dongmug Kang ;Eun-Soo Lee ;Tae-Kyoung Kim;Yoon-Ji Kim ;Seungho Lee ;Woojoo Lee ;Hyunman Sim ;Se-Yeong Kim
    • Safety and Health at Work
    • /
    • v.14 no.3
    • /
    • pp.279-286
    • /
    • 2023
  • Background: This study aimed to evaluate the association between exposure to occupational hazards and the metabolic syndrome. A secondary objective was to analyze the additive and multiplicative effects of exposure to risk factors. Methods: This retrospective cohort was based on 31,615 health examinees at the Pusan National University Yangsan Hospital in Republic of Korea from 2012-2021. Demographic and behavior-related risk factors were treated as confounding factors, whereas three physical factors, 19 organic solvents and aerosols, and 13 metals and dust were considered occupational risk factors. Time-dependent Cox regression analysis was used to calculate hazard ratios. Results: The risk of metabolic syndrome was significantly higher in night shift workers (hazard ratio = 1.45: 95% confidence interval = 1.36-1.54) and workers who were exposed to noise (1.15:1.07-1.24). Exposure to some other risk factors was also significantly associated with a higher risk of metabolic syndrome. They were dimethylformamide, acetonitrile, trichloroethylene, xylene, styrene, toluene, dichloromethane, copper, antimony, lead, copper, iron, welding fume, and manganese. Among the 28 significant pairs, 19 exhibited both positive additive and multiplicative effects. Conclusions: Exposure to single or combined occupational risk factors may increase the risk of developing metabolic syndrome. Working conditions should be monitored and improved to reduce exposure to occupational hazards and prevent the development of the metabolic syndrome.

A Study of a Combined Microwave and Thermal Desorption Process for Contaminated Soil

  • Ha, Sang-An;Choi, Kyoung-Sik
    • Environmental Engineering Research
    • /
    • v.15 no.4
    • /
    • pp.225-230
    • /
    • 2010
  • In order to treat soil contaminated with high percentages of water and petroleum, the combined microwave and thermal desorption process was studied, which was composed of the consecutive connection of two pre-treatment processes. For the thickness of the contaminated soil layer on the transfer conveyor belt, the optimal total petroleum hydrocarbon (TPH) removal rate was studied with respect to the duration of microwave exposure in the consecutive process combined with thermal desorption. The TPH removal rate when the contaminated soil layer thickness was 1 cm at 6 kW of microwave power was 80%. The removals rates for 2 and 3 cm soil layer thicknesses were both 70%. Under identical experimental conditions, the TPH removal rate for the microwave pre-treatment, when considering the soil particle size, was over 70%. The lowest TPH removal rate was achieved with a particle diameter of 2.35 mm. For contaminated soil with 30% water content, 6 kW and a thermal desorption temperature of $600^{\circ}C$ were the optimal operational conditions for the removal of THP. However, considering the fuel consumption cost, 4 kW and a thermal desorption temperature of $300^{\circ}C$ would be the most economic conditions.

Experimental Study on Deterioration Characteristics under Combined Exposure Conditions of Chlorides and Sulfates (염화물 및 황산염 복합환경 하에서의 열화특성에 관한 실험적 연구)

  • 오병환;인광진;강의영;김지상;서정문
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.771-776
    • /
    • 2001
  • Test results on the deterioration process of concrete under single and combined attacks of chloride penetration have been obtained. After test period of 52 weeks, it is found that the internally penetrated chloride ion contents are less in the single attacks of chloride than the combined attacks of chloride and sulfate. Both the diffusion coefficients and surface chloride concentration derived form the chloride profiles showed a time dependence. Also the performance of fly ash-blended cements was observed to be better than plain cements in retarding chloride attack. However it should be needed that improved chloride diffusion model for the combined deterioration process.

  • PDF

Effects of Exposure Dose Reduction by Optimization of Automatic Exposure Control Factors in Digital Radiographic Examination of Paranasal Sinus (부비동 디지털 엑스선검사에서 자동노출제어 조절인자의 최적화를 통한 조사선량 감소 효과)

  • Jeong, Min-Gyu;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.173-181
    • /
    • 2021
  • The purpose of this study was to reduce dose while maintaining image quality during digital radiographic examination of paranasal sinus by using the automatic exposure control (AEC) system. The tube voltage was set as six stages that increased by about 10 kVp to 70 kVp, 81 kVp, 90 kVp, 102 kVp, 109 kVp and 117 kVp. And then the AEC system conditions were consisted of 9 setting environments, that change mode of the sensitivity (S200, S400, S800) and the density (+2.5, 0, -2.5). We measured automatically exposed tube current (mAs) under 54 conditions with combined these, and assessed SNR and PSNR through the acquired images. In addition, four radiologists performed a qualitative assessment of the acquired images for each combination on a five-point scale of the Likert. As a result, the lowest dose and the highest values of SNR and PSNR in images with a qualitative assessment more than 4 point were the AEC control factors of 90 kVp, S800, D2.5. We applied this condition to the clinical trial, it showed an effect of 83.1% reduction in exposure radiation dose (mR). Therefore, AEC system could be used as dose reduction technology if it understood and used related regulatory factors and physical characteristics.

The Unequal Burden of Self-Reported Musculoskeletal Pains Among South Korean and European Employees Based on Age, Gender, and Employment Status

  • Bahk, Jinwook;Khang, Young-Ho;Lim, Sinye
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.57-65
    • /
    • 2021
  • Background: The objective of this study was to elucidate the relationships musculoskeletal pains with combined vulnerability in terms of age, gender, and employment status Methods: The fifth European Working Conditions Survey (EWCS) in 2010 (43,816 participants aged 15 years and over) analyzed for European employees and the third Korean Working Conditions Survey (KWCS) in 2011 (50,032 participants aged 15 years and older) analyzed for Korean employees. In this study, three well known vulnerable factors to musculoskeletal pains (older age, female gender, and precarious employment status) were combined and defined as combined vulnerability. Associations of musculoskeletal pains with combined vulnerability were assessed with prevalence ratios (PRs) and 95% confidence intervals (CIs) estimated by Poisson regression models with robust estimates of variance. Results: The prevalences of musculoskeletal pains were lower but the absolute and relative differences between combined vulnerabilities were higher among Korean employees compared with the European employees. Furthermore, the increased risk of having musculoskeletal pains according to combined vulnerability was modestly explained by socioeconomic factors and exposure to ergonomic risk factors, especially in Republic of Korea. Conclusions: The results of this study showed that the labor market may be more unfavorable for female and elderly workers in Republic of Korea. Any prevention strategies to ward off musculoskeletal pains, therefore, should be found and implemented to mitigate or buffer against the most vulnerable work population, older, female, and precarious employment status, in Republic of Korea.