• 제목/요약/키워드: combined design of shear and torsional moment

검색결과 6건 처리시간 0.019초

콘크리트의 비틀림강도를 포함한 RC보의 공칭비틀림강도 (Nominal Torsional Moment Strength of RC Beam with Torsional Moment Strength of Concrete)

  • 박창규
    • 한국농공학회지
    • /
    • 제44권3호
    • /
    • pp.73-84
    • /
    • 2002
  • Nominal shear strength of concrete beam is the combined strength of concrete shear strength and steel shear strength in current design code. But Torsional moment strength of concrete is neglected in calculation of the nominal torsional moment strength of reinforced concrete beam in current revised code. Tensile stress of concrete strut between cracks is still in effect due to tension stiffening effect. But the tensile stresses of concrete after cracking are neglected in bending and torsion in design. The torsional behavior is similar to the shear behavior in mechanics. Therefore the torsional moment strength of concrete should be concluded to the nominal torsional moment strength of reinforced concrete beam. To verify the validity of the proposed model, the nominal torsional moment strengths according to CEB, two ACI codes(89, 99) and proposed model are compared to experimental torsional strengths of 55 test specimens found in literature. The nominal torsional moment strengths by the proposed model show the best results.

전단과 비틀림모멘트 설계의 조합 (Combined Design Method for Shear and Torsional Moment)

  • 민창식
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.57-65
    • /
    • 2011
  • 전단과 비틀림모멘트가 동시에 작용하는 경우에 단면에는 각각의 영향으로 인하여 전단응력이 발생하므로 이 두 응력을 더하여 설계할 수 있다. 그러나 현행 콘크리트구조설계기준에서는 전단과 비틀림모멘트 설계식을 단위가 서로 틀린 단면력으로 표현하여 분포도를 그리기 위해서는 각각의 좌표에 분리해서 그려야만 한다. 만약에 이 두 하중으로 인한 단면력을 응력으로 표현하게 되면 두 전단응력을 더하여 하나의 좌표에 표현할 수 있고, 설계 결과도 동시에 그려 넣을 수 있으므로 쉽게 설계과정을 인식하여 실수를 최소화 할 수 있을 것이다. 게다가 현행 기준에서는 전단과 비틀림모멘트에 대한 설계식을 단위 길이 당 스터럽의 단면적으로 표현되는 $A_{\upsilon}/s$$2A_{\upsilon}/s$로 제시하여, 설계과정에서 이 값들의 크기나 상황을 정확하게 인식하기 거의 불가능하게 된다. 설계에서 먼저 스터럽의 종류를 결정하여 단면적 $A_{\upsilon}$$A_t$가 결정되므로 설계식들을 스터럽의 간격에 대한 식으로 정리하면 설계과정을 명확하게 인식할 수 있고 또한 여러 설계과정도 간단하게 정리되어 이해하기 쉽도록 할 것이다.

Torsional strength model of reinforced concrete members subjected to combined loads

  • Ju, Hyunjin;Lee, Deuckhang;Zhang, Wei;Wang, Lei
    • Computers and Concrete
    • /
    • 제29권 5호
    • /
    • pp.285-301
    • /
    • 2022
  • This study aims at developing a torsional strength model based on a nonlinear analysis method presented in the previous studies. To this end, flexural neutral axis depth of a reinforced concrete section and effective thickness of an idealized thin-walled tube were formulated based on reasonable approximations. In addition, various sectional force components, such as shear, flexure, axial compression, and torsional moment, were considered in estimating torsional strength by addressing a simple and linear strain profile. Existing test results were collected from literature for verifications by comparing with those estimated from the proposed model. On this basis, it can be confirmed that the proposed model can evaluate the torsional strength of RC members subjected to combined loads with a good level of accuracy, and it also well captured inter-related mechanisms between shear, bending moment, axial compression, and torsion.

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • 제17권5호
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

후방추돌시 목상해를 고려한 승객거동해석 및 좌석설계 (Occupant Analysis and Seat Design to Reduce the Neck Injury for Rear End Impact)

  • 신문균;박기종;박경진
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.182-194
    • /
    • 1999
  • Occupant injury in rear end impact is rapidly becoming one of the most aggravating traffic safety problems with high human suffering and societal costs. Although rear end impact occurs at relatively low speed , it may cause permanent disability due to neck injuries resulting from an abrupt moment, shear force , and tension/compression force at the occipital condyles. The analysis is performed for a combined occupant-eat model response, using the SAFE(Safety Analysis for occupant crash Environment) computer program. The computational results are verified by those from sled tests. A parameter study is conducted for many physical and mechanical properties. Seat design has been performed based on the design of experiment process with respect to five parameters; seat-back upholstery stiffness, torsional stiffness of the seat-back. An orthogonal array is selected from the parameter study. A good design has been found from the analysis results based on the orthogonal array. The results show that reductions of stiffness in seat-back upholstery and joint are the most effective for preventing neck injuries.

  • PDF

Computation of design forces and deflection in skew-curved box-girder bridges

  • Agarwal, Preeti;Pal, Priyaranjan;Mehta, Pradeep Kumar
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.255-267
    • /
    • 2021
  • The analysis of simply supported single-cell skew-curved reinforced concrete (RC) box-girder bridges is carried out using a finite element based CsiBridge software. The behaviour of skew-curved box-girder bridges can not be anticipated simply by superimposing the individual effects of skewness and curvature, so it becomes important to examine the behaviour of such bridges considering the combined effects of skewness and curvature. A comprehensive parametric study is performed wherein the combined influence of the skew and curve angles is considered to determine the maximum bending moment, maximum shear force, maximum torsional moment and maximum vertical deflection of the bridge girders. The skew angle is varied from 0° to 60° at an interval of 10°, and the curve angle is varied from 0° to 60° at an interval of 12°. The scantly available literature on such bridges focuses mainly on the analysis of skew-curved bridges under dead and point loads. But, the effects of actual loadings may be different, thus, it is considered in the present study. It is found that the performance of these bridges having more curvature can be improved by introducing the skewness. Finally, several equations are deduced in the non-dimensional form for estimating the forces and deflection in the girders of simply supported skew-curved RC box-girder bridges, based upon the results of the straight one. The developed equations may be helpful to the designers in proportioning, analysing, and designing such bridges, as the correlation coefficient is about 0.99.