In this paper, we consider an interesting variant of the inverse minimum traveling salesman problem. Given an instance (G, w) of the minimum traveling salesman problem defined on a metric space, we fix a specified Hamiltonian cycle $HC_0$. The task is then to adjust the edge cost vector w to w' so that the new cost vector w' satisfies the triangle inequality condition and $HC_0$ can be returned by the minimum spanning tree algorithm in the TSP-instance defined with w'. The objective is to minimize the total deviation between the original and the new cost vectors with respect to the $L_1$-norm. We call this problem the inverse metric traveling salesman problem against the minimum spanning tree algorithm and show that it is closely related to the inverse metric spanning tree problem.
Journal of the military operations research society of Korea
/
v.35
no.3
/
pp.47-59
/
2009
A hybrid Genetic Algorithm is applied to military resource allocation problem. Since military uses many resources in order to maximize its ability, optimization technique has been widely used for analysing resource allocation problem. However, most of the military resource allocation problems are too complicate to solve through the traditional operations research solution tools. Recent innovation in computer technology from the academy makes it possible to apply heuristic approach such as Genetic Algorithm(GA), Simulated Annealing(SA) and Tabu Search(TS) to combinatorial problems which were not addressed by previous operations research tools. In this study, a hybrid Genetic Algorithm which reinforces GA by applying local search algorithm is introduced in order to address military optimization problem. The computational result of hybrid Genetic Algorithm on Missile Interceptor Allocation problem demonstrates its efficiency by comparing its result with that of a simple Genetic Algorithm.
Proceedings of the Korean Operations and Management Science Society Conference
/
2006.05a
/
pp.1-8
/
2006
This paper considers an interesting transportation problem where trailers and tractors are involved in moving material. We identified a class of combinatorial optimization problems for minimizing the number of tractors and trailers required to accommodate the transportation needs. Then, we show that the fundamental problem is NP-hard and analyze its properties to develop efficient heuristic to handle the problem effectively.
Proceedings of the Korean Operations and Management Science Society Conference
/
1996.04a
/
pp.519-524
/
1996
This paper describes the application of Genetic Algorithms(GAs) to nonlinear constrained mixed optimization problems. Genetic Algorithms are combinatorial in nature, and therefore are computationally suitable for treating discrete and integer design variables. But, several problems that conventional GAs are ill defined are applicaiton of penalty function that can be adapted to transform a constrained optimization problem into an unconstrained optimization problem into an unconstrained one and premature convergence of solution. Thus, we developed an modified GAs to solve this problems, and two examples are given to demonstrate the effectiveness of the methodology developed in this paper.
This paper focuses on the fast convergence in nonlinear parameter optimization which is necessary for the fitting of nonlinear models to data. The simulated annealing(SA) and genetic algorithm(GA), which are widely used for combinatorial optimization problems, are stochastic strategy for search of the ground state and a powerful tool for optimization. However, their main disadvantage is the long convergence time by unnecessary extra works. It is also recognised that gradient-based nonlinear programing techniques would typically fail to find global minimum. Therefore, this paper develops a modified SA which is the SDS(Stochastic deterministic stochastic) algorithm can minimize cost function of optimal problem.
Journal of Korean Society of Industrial and Systems Engineering
/
v.36
no.3
/
pp.71-78
/
2013
An efficient vehicle routing heuristic for different vehicle moving times for forward and backward between two points is studied in this research. Symmetric distance or moving times are assumed to move back and forth between two points in general, but it is not true in reality. Also, various moving speeds along time zones are considered such as the moving time differences between rush hours or not busy daytimes. To solve this type of extremely complicated combinatorial optimization problems, delivery zones are specified and delivery orders are determined for promising results on the first stage. Then delivery orders in each zone are determined to be connected with other zones for a tentative complete delivery route. Improvement steps are followed to get an effective delivery route for unsymmetric-time-varing vehicle moving speed problems. Performance evaluations are done to show the effectiveness of the suggested heuristic using computer programs specially designed and developed using C++.
In structural health monitoring of large-scale structures, optimal sensor placement plays an important role because of the high cost of sensors and their supporting instruments, as well as the burden of data transmission and storage. In this study, a vibration sensor placement algorithm based on deep reinforcement learning (DRL) is proposed, which can effectively solve non-convex, high-dimensional, and discrete combinatorial sensor placement optimization problems. An objective function is constructed to estimate the quality of a specific vibration sensor placement scheme according to the modal assurance criterion (MAC). Using this objective function, a DRL-based algorithm is presented to determine the optimal vibration sensor placement scheme. Subsequently, we transform the sensor optimal placement process into a Markov decision process and employ a DRL-based optimization algorithm to maximize the objective function for optimal sensor placement. To illustrate the applicability of the proposed method, two examples are presented: a 10-story braced frame and a sea-crossing bridge model. A comparison study is also performed with a genetic algorithm and particle swarm algorithm. The proposed DRL-based algorithm can effectively solve the discrete combinatorial optimization problem for vibration sensor placements and can produce superior performance compared with the other two existing methods.
Journal of Korean Society of Industrial and Systems Engineering
/
v.43
no.1
/
pp.1-6
/
2020
Fast service access involves keeping track of the location of mobile users, while they are moving around the mobile network for a satisfactory level of QoS (Quality of Service) in a cost-effective manner. The location databases are used to keep track of Mobile Terminals (MT) so that incoming calls can be directed to requested mobile terminals at all times. MT reporting cell system used in location management is to designate each cell in the network as a reporting cell or a non-reporting cell. Determination of an optimal number of reporting cells (or reporting cell configuration) for a given network is reporting cell planning (RCP) problem. This is a difficult combinatorial optimization problem which has an exponential complexity. We can see that a cell in a network is either a reporting cell or a non-reporting cell. Hence, for a given network with N cells, the number of possible solutions is 2N. We propose a biogeography based optimization (BBO) for design of mobile station location management system in wireless communication network. The number and locations of reporting cells should be determined to balance the registration for location update and paging operations for search the mobile stations to minimize the cost of system. Experimental results show that our proposed BBO is a fairly effective and competitive approach with respect to solution quality for optimally designing location management system because BBO is suitable for combinatorial optimization and multi-functional problems.
Journal of the Korean Society for Aeronautical & Space Sciences
/
v.38
no.5
/
pp.427-436
/
2010
This paper deals with a task assignment problem of multiple UAVs performing multiple tasks on multiple targets. The task assignment problem of multiple UAVs is a kind of combinatorial optimization problems such as traveling salesman problem or vehicle routing problem, and it has NP-hard computational complexity. Therefore, computation time increases as the size of considered problem increases. To solve the problem efficiently, approximation methods or heuristic methods are widely used. In this study, the problem is formulated as a mixed integer linear program, and is solved by a mixed integer linear programming and a genetic algorithm, respectively. Numerical simulations for the environment of the multiple targets, multiple tasks, and obstacles were performed to analyze the optimality and efficiency of each method.
This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a postoptimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.