• Title/Summary/Keyword: combat vehicle system

Search Result 75, Processing Time 0.028 seconds

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

Development Direction of Reliability-based ROK Amphibious Assault Vehicles (신뢰성 기반 한국군 차기 상륙돌격장갑차 발전방향)

  • Baek, Ilho;Bong, Jusung;Hur, Jangwook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.14-22
    • /
    • 2021
  • A plan for the development of reliability-based ROK amphibious assault vehicles is proposed. By analyzing the development case of the U.S. EFV, considerations for the successful development of the next-generation Korea Forces amphibious assault vehicle are presented. If the vehicle reliability can be improved to the level of the fourth highest priority electric unit for power units, suspensions, decelerators, and body groups, which have the highest priority among fault frequency items, a system level MTBF of 36.4%↑ can be achieved, and the operational availability can be increased by 3.5%↑. The next-generation amphibious assault vehicles must fulfill certain operating and performance requirements, the underlying systems must be built, and sequencing of the hybrid engine and the modular concept should be considered. Along with big-data- and machine-learning-based failure prediction, machine maintenance based on augmented reality/virtual reality and remote maintenance should be used to improve the ability to maintain combat readiness and reduce lifecycle costs.

A Development of Hit Probability-based Vulnerability Analysis System for Armored Fighting Vehicle using Fault Tree Analysis Technique (FTA 기법을 활용한 피격 확률 기반의 전차 취약성 분석 시스템 개발)

  • Hwang, Hun-Gyu;Yoo, Byeong-Gyu;Lee, Jae-Woong;Lee, Jang-Se
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1981-1989
    • /
    • 2015
  • Recently, the development of reliability analysis system for combat system is required, because, necessities of integrated reliability analysis research are emphasized. In this paper, we develop a system which analyzes vulnerabilities for tank(or armored vehicle) based on the fault tree analysis(FTA) technique. The FTA is representative technique of reliability analysis to find cause of fault and calculate probability of fault. To do this, we propose a method to apply FTA technique into domain of vulnerability analysis for tank. Also, we develop the vulnerability analysis system using the proposed method. The system analyzes hit probabilities of components of tank based on multiple shot-lines, and calculates kill probabilities. The analyzed and calculated data support vulnerability analysis of tank.

A Study on the Defense System of the Hypersonic Missile Systems (극초음속 미사일 대응을 위한 방어체계에 관한 연구)

  • Lee, Kyoung-haing
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • The Kinzal missile launched by Russia in Ukraine and flew on March 5 or more speeds is the first hypersonic cruise missile used in combat. High speed leads to destructive solid power, and the security system's interception time is significantly reduced. Therefore, hypersonic missiles could be a game-changer. Even the United States, with its multi-layered defense system, admits the difficulty of intercepting it. Military powers like the United States, Russia, China and North Korea are focus on developing hypersonic missiles as offensive weapons, but their defense system capabilities are inadeqate. From this perspective, this paper identifies significant countrie's hypersonic missile development status and defense system capabilities and seeks to derive a countermeasure for the ROK military.

A Study on the Reduction Technique of Recoil Force for Soft Recoil System using Dynamic Behavior (동적 거동을 이용한 연식주퇴장치의 주퇴력 저감 기법 연구)

  • Yoo, Sam-Hyeon;Lee, Jae-Yeong;Lee, Jong-Woo;Jo, Seong-Sik;Kim, Ju-Hee;Kim, In-Su;Lim, Soo-Chul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.5-11
    • /
    • 2007
  • The future combat system is likely to be studied and developed in terms of enhancing both firepower and mobility simultaneously. Increased firepower often necessitates a heavier firing system. In return, the body of the vehicle needs to be light-weight in order to improve the mobility of the whole system. For this reason, in the areas of weapons systems such as the tank and self-propelled artillery, a number of studies attempting to develop designs that reduce recoil force against the body of the vehicle are being conducted. The current study proposes a tank construction that has a mass-spring-damper system with two degrees of freedom. A tank structure mounted with a specific soft recoil system that was implemented using a soft recoil technique and another tank structure based on a general recoil technique were compared to each other in order to analyze the recoil forces, the displacements of recoil, and the firing intervals when they were firing. MATLAB-Simulink was used as a simulating tool. In addition, the relationship between the movement of the recoil parts and the positions of the recoil latches in each of the two structures were analyzed. The recoil impact power, recoil displacement, firing interval, and so on were derived as functional formulas based on the position of the recoil latch.

SHAPE OPTIMIZATION OF UCAV FOR AERODYNAMIC PERFORMANCE IMPROVEMENT AND RADAR CROSS SECTION REDUCTION (공력 향상과 RCS 감소를 고려한 무인 전투기의 형상 최적설계)

  • Jo, Y.M.;Choi, S.I.
    • Journal of computational fluids engineering
    • /
    • v.17 no.4
    • /
    • pp.56-68
    • /
    • 2012
  • Nowadays, Unmanned Combat Air Vehicle(UCAV) has become an important aircraft system for the national defense. For its efficiency and survivability, shape optimization of UCAV is an essential part of its design process. In this paper, shape optimization of UCAV was processed for aerodynamic performance improvement and Radar Cross Section(RCS) reduction using Multi Objective Genetic Algorithm(MOGA). Lift and induced drag, friction drag, RCS were calculated using panel method, boundary layer theory, Physical Optics(PO) approximation respectively. In particular, calculation applied Radar Absorbing Material(RAM) was performed for the additional RCS reduction. Results are indicated that shape optimization is performed well for improving aerodynamic performance, reducing RCS. Further study will be performed with higher fidelity tools and consider other design segments including structure.

Strategic Operation Method of Military Robot System for Future Warfare (미래 전투를 위한 군사 로봇 시스템의 전략적 운용 방법)

  • Lee, Jun-Pyo;Cho, Han-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.169-170
    • /
    • 2012
  • 현대전에서는 인명 손실을 최소화하는 동시에 타 전투체계와의 연계를 통해 부여된 임무를 성공적으로 이끌어 내기 위해 무인로봇을 활발하게 이용하고 있다. 본 논문에서는 미래 전장에서 중심 역할을 수행할 것으로 기대되는 무인로봇과 통제장치의 기능을 제안한다. 통제장치는 디지털 지도를 기반으로 무인로봇의 위치를 전시하는 동시에 특정 위치로의 자율 이동 명령을 내리게 하는 인터페이스이다. 통제장치에서 무인로봇의 실시간 이동 간에 디지털 지도 기반 가시선(line of sight) 분석을 수행함으로써 통신 가능지역 식별 및 중계기를 통한 통신 가능 영역 식별을 용이하게 한다. 제안한 무인로봇과 통제장치를 통해 전장 환경에서 부여된 작전을 성공적으로 이끄는데 주된 역할을 수행할 것으로 기대한다.

  • PDF

A Development of DDS Based Chirp Signal Generator and X-Band Transmitter-Receiver for Small SAR Sensor (DDS 기반의 소형 SAR 시스템 송수신장비 개발)

  • Song, Kyoung-Min;Lee, Ki-Woong;Lee, Chang-Hyun;Lee, Woo-Kyung;Lee, Myeong-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.326-329
    • /
    • 2016
  • UAVs(Unmanned Aerial Vehicle) can be used in variant fields fornot only combat, but also recon, observation and exploration. Moreover, UAVs capacity can be expanded to impossible missions for existing surveillance system such as SAR(Synthetic Aperture Radar) technology that collecting images from all weather conditions. In recent days, with development of highly efficient IC and lightened system technology, there are significant increase of researches and demands to make SAR sensor as a payload of UAV. Therefore, this paper contains development process and results of small signal generator and RF device as a core module of SAR system based on the digital device of DDS.

Deriving Priorities between Autonomous Functions of Unmanned Aircraft using AHP Analysis: Focused on MUM-T for Air to Air Combat (AHP 기법을 이용한 무인기 자율기능 우선순위 도출: 유무인 협업 공대공 교전을 중심으로)

  • Jung, Byungho;Oh, Jihyun;Seol, Hyeonju;Hwang, Seong In
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.1
    • /
    • pp.10-19
    • /
    • 2022
  • Recently, the Defense Advanced Research Projects Agency(DARPA) in the United States is studying a new concept of war called Mosaic Warfare, and MUM-T(Manned-Unmanned Teaming) through the division of missions between expensive manned and inexpensive unmanned aircraft is at the center. This study began with the aim of deriving the priority of autonomous functions according to the role of unmanned aerial vehicles in the present and present collaboration that is emerging along with the concept of mosaic warfare. The autonomous function of unmanned aerial vehicles between the presence and absence collaboration may vary in priority depending on the tactical operation of unmanned aerial vehicles, such as air-to-air, air-to-ground, and surveillance and reconnaissance. In this paper, ACE (Air Combat Evaluation), Skyborg, and Longshot, which are recently studied by DARPA, derive the priority of autonomous functions according to air-to-air collaboration, and use AHP analysis. The results of this study are meaningful in that it is possible to recognize the priorities of autonomous functions necessary for unmanned aircraft in order to develop unmanned aerial vehicles according to the priority of autonomous functions and to construct a roadmap for technology implementation. Furthermore, it is believed that the mass production and utilization of unmanned air vehicles will increase if one unmanned air vehicle platform with only essential functions necessary for air-to-air, air-to-air, and surveillance is developed and autonomous functions are expanded in the form of modules according to the tactical operation concept.

The Impact of Failure Frequency Items on Availability and Operation Support Costs of Armored Vehicles (장갑차의 가용도와 운영유지비용에 미치는 고장 다빈도 품목의 영향성 분석)

  • Bong, Ju-Sung;Baek, Il-Ho;Kim, Min-Seop;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.8-15
    • /
    • 2021
  • The effects on system availability, operation, and support costs were analyzed using the M&S system (MPS). The failure frequency items of current armored vehicles were identified and the MTBF of the identified items was improved. The results of this study suggest that when we reduce the frequency of failure, the availability increases, and the operation and support costs decrease. By improving the reliability of the failure frequency items, it becomes possible to upgrade or develop the weapons systems. Through this study, we confirmed that improving reliability will enhance combat readiness and reduce operation and support costs.