• Title/Summary/Keyword: column-parallel readout

Search Result 4, Processing Time 0.016 seconds

Low-Power CMOS image sensor with multi-column-parallel SAR ADC

  • Hyun, Jang-Su;Kim, Hyeon-June
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.223-228
    • /
    • 2021
  • This work presents a low-power CMOS image sensor (CIS) with a multi-column-parallel (MCP) readout structure while focusing on improving its performance compared to previous works. A delta readout scheme that utilizes the image characteristics is optimized for the MCP readout structure. By simply alternating the MCP readout direction for each row selection, additional memory for the row-to-row delta readout is not required, resulting in a reduced area of occupation compared to the previous work. In addition, the bias current of a pre-amplifier in a successive approximate register (SAR) analog-to-digital converter (ADC) changes according to the operating period to improve the power efficiency. The prototype CIS chip was fabricated using a 0.18-㎛ CMOS process. A 160 × 120 pixel array with 4.4 ㎛ pitch was implemented with a 10-bit SAR ADC. The prototype CIS demonstrated a frame rate of 120 fps with a total power consumption of 1.92 mW.

Capacitor Ratio-Independent and OP-Amp Gain-Insensitive Algorithmic ADC for CMOS Image Sensor (커패시터의 비율과 무관하고 OP-Amp의 이득에 둔감한 CMOS Image Sensor용 Algorithmic ADC)

  • Hong, Jaemin;Mo, Hyunsun;Kim, Daejeong
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.942-949
    • /
    • 2020
  • In this paper, we propose an improved algorithmic ADC for CMOS Image Sensor that is suitable for a column-parallel readout circuit. The algorithm of the conventional algorithmic ADC is modified so that it can operate as a single amplifier while being independent of the capacitor ratio and insensitive to the gain of the op-amp, and it has a high conversion efficiency by using an adaptive biasing amplifier. The proposed ADC is designed with 0.18-um Magnachip CMOS process, Spectre simulation shows that the power consumption per conversion speed is reduced by 37% compared with the conventional algorithmic ADC.

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.