• 제목/요약/키워드: column-and-tie timber construction

검색결과 1건 처리시간 0.016초

Experimental and numerical studies on cyclic behavior of continuous-tenon joints in column-and-tie timber construction

  • Qi, Liangjie;Xue, Jianyang;Xu, Dan
    • Structural Engineering and Mechanics
    • /
    • 제75권5호
    • /
    • pp.529-540
    • /
    • 2020
  • The mechanical properties of timber construction have drawn more attention after the 2013 Lushan earthquake. A strong desire to preserve this ancient architectural styles has sprung up in recent years, especially for residential buildings of the mountainous areas. In the column-and-tie timber construction, continuous-tenon joints are the most common structural form to connect the chuanfang (similar to the beam in conventional structures) and the column. To study the cyclic performance of the continuous-tenon joints in column-and-tie timber construction, the reversed lateral cyclic loading tests were carried out on three 3/4 scale specimens with different section heights of the chuanfang. The mechanical behavior was assessed by studying the ultimate bending capacity, deformation ductility and energy dissipation capacity. Test results showed that the slippage of chuanfang occurred when the specimens entered the plastic stage, and the slippage degree increased with the increase of the section height of chuanfang. An obvious plastic deformation of the chuanfang occurred due to the mutual squeezing between the column and chuanfang. A significant pinching was observed on the bending moment-rotation curves, and it was more pronounced as the section height of chuanfang increased. The further numerical investigations showed that the flexural capacity and initial stiffness of the continuous-tenon joints increased with the increase of friction coefficient between the chuanfang and the column, and a more obvious increasing of bending moment occurred after the material yielding. The compressive strength perpendicular to grain of the material played a more significant role in the ultimate bending capacity of continuous-tenon joints than the compressive strength parallel to grain.