• Title/Summary/Keyword: column members

Search Result 497, Processing Time 0.029 seconds

매개변수에 따른 기둥축소량 변화에 관한 연구 (Variations of Column Shortening with Parameters)

  • 정은호;김형래
    • 콘크리트학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-67
    • /
    • 2000
  • With increased height of structure, the effect of column shortening need special consideration in the design and construction of high-rise buildings. The shortening of each column affects nonstructural members such as partitions, cladding, and M/E systems, which are not designed to carry gravity forces. The slabs and beams will tilt due to the cumulative differential shortening of adeacent vertical members. The main purpose of estimating the total shortening of vertical structural member is to compensate the differential shortening between adeacent members. This paper presents effect of parameters for phenomenon of column shortening in vertical members. The paper presents effect of parameters for phenomenon of column shortening in vertical members. The conclusions obtained from this study are follow as ; Strength of concrete and steel ratio effected on column shortening caused by elastic and inelastic shortening. Also, it is known that Ultimate-shrinkage-Value, Specific-Creep-Value, and volume to surface ratio effected on inelastic shortening only. Particularly, Ultimate-Shrinkage-Value and Specific-Creep-Value effected considerable on the amount of total column shortening.

합성 PC 라멘조를 위한 물량산출 시스템 (Quantity survey system for column-beam structure comprised of composite precast concrete members)

  • 임채연;김선국
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.48-49
    • /
    • 2014
  • Green Frame is a column-beam system that uses composite precast concrete members. Previous studies have proven this system to be not only structurally safe, constructible, and economically feasible, but also environmentally-friendly. If the computerized program is used to estimate the quantity, the result of it shall be calculated much easily, quickly and exactly than manual estimation, because precast concrete members of Green Frame has standard size and connection method between it. Therefore, this study suggest quantity survey concept for column-beam structure comprised of composite precast concrete members. Hereafter, the quantity survey of Green Frame shall be much quickly and accurate, if the system would be made based on the result of this study.

  • PDF

Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs

  • Yurdakul, Ozgur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.521-543
    • /
    • 2015
  • Depending on the damage type as well as the level of damage observed after the earthquake, certain measures should be taken for the damaged buildings. In this study, structural repairing of two different types of damaged RC beam-column assembly by carbon fiber-reinforced polymer sheets is investigated in detail as a member repairing technique. Two types of 1:1 scale test specimens, which represent the exterior RC beam-column connection taken from inflection points of the frame, are utilized. The first specimen is designed according to the current Turkish Earthquake Code, whereas the second one represents a deficient RC beam-column assembly. Both of the specimens were subjected to cyclic quasistatic loading in the laboratory and different levels of structural damage were observed. The first specimen displayed a ductile response with the damage concentrated in the beam. However, in the second specimen, the beam-column joint was severely damaged while the rest of the members did not attain their capacities. Depending on the damage type of the specimens, the damaged members were repaired by CFRP wrapping with different configurations. After testing the repaired specimens, it is found that former capacities of the damaged members were mostly recovered by the application of CFRPs on the damaged members.

트러스로 보강된 단일기둥시스템의 탄성좌굴강도에 대한 연구 (A Study on Elastic Buckling Strength of Truss-Stayed Single Column System)

  • 김경식
    • 한국산학기술학회논문지
    • /
    • 제12권12호
    • /
    • pp.5984-5989
    • /
    • 2011
  • 양단 핀지지 기둥부재의 중간 위치에 수평재를 연결하고 설치된 수평재의 양끝단과 기둥의 상하끝단을 트러스로 연결된 트러스보강 단일기둥시스템은 보강되지 않은 경우에 비해 그 좌굴강도가 상당수준 향상될 수 있다. 수평재가 설치된 기둥중간지점에서의 수평 및 회전 자유도에 대한 제한하여 기둥의 유효좌굴길이를 줄이는 효과를 통해 강도향상이 구현된다. 본 연구에서는 해석적 해와 탄성 및 비탄성 유한요소해석을 통해 보강된 평면내 단일기둥 시스템의 좌굴강도를 정량적으로 산정하였고 그 결과를 비교하였다. 예제해석을 통해 보강된 단일기둥시스템은 보강되지 않은 단순기둥에 비해 최대 8배까지 좌굴강도가 향상될 수 있음이 확인되었다.

Effective buckling length of steel column members based on elastic/inelastic system buckling analyses

  • Kyung, Yong-Soo;Kim, Nam-Il;Kim, Ho-Kyung;Kim, Moon-Young
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.651-672
    • /
    • 2007
  • This study presents an improved method that uses the elastic and inelastic system buckling analyses for determining the K-factors of steel column members. The inelastic system buckling analysis is based on the tangent modulus theory for a single column and the application is extended to the frame structural system. The tangent modulus of an inelastic column is first derived as a function of nominal compressive stress from the column strength curve given in the design codes. The tangential stiffness matrix of a beam-column element is then formulated by using the so-called stability function or Hermitian interpolation functions. Two inelastic system buckling analysis procedures are newly proposed by utilizing nonlinear eigenvalue analysis algorithms. Finally, a practical method for determining the K-factors of individual members in a steel frame structure is proposed based on the inelastic and/or elastic system buckling analyses. The K-factors according to the proposed procedure are calculated for numerical examples and compared with other results in available references.

Bay 수와 가새재 설치가 시스템 비계 극한거동에 미치는 영향 (Effects of Number of bays and Bracing Member on the Ultimate Behavior of System Scaffolds)

  • 이선우;장남권;원정훈;정성춘
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.6-15
    • /
    • 2020
  • This study examined the structural behaviors and ultimate loads of assembled system scaffolds by load tests. Considering the number of bay and bracing installation, four specimens were tested. The bays were divided into 1 bay and 2 bays, with and without the bracing member installed. Failure modes and horizontal displacements show that the whole column buckled without showing no point of inflection in the column, regardless of whether or not braces were installed. Thus, the current design method of selecting the vertical spacing between the horizontal members of the system scaffold as the effective buckling length underestimates the effective buckling length. In case of 1 bay specimens, the ultimate loads between specimens with and with bracing members are similar. However, in case of 2 bay specimens, the specimen with bracing members shows the increased ultimate load of 36% compared with that without bracing members. In addition, as the number of bays in the system scaffold increases, the ultimate load of the unit vertical column increases in case of the specimen with bracing installation. However, in the specimen without bracing members, the ultimate load of the unit column reduces with the increment of the number of bays due to the torsional buckling. Therefore, it is essential to install bracing members to increase the whole strength of system scaffolds and the ultimate load of the unit column.

Experimental study on partially-reinforced steel RHS compression members

  • Pinarbasi, Seval
    • Structural Engineering and Mechanics
    • /
    • 제63권3호
    • /
    • pp.385-400
    • /
    • 2017
  • This paper presents an experimental study on the behavior of axially-loaded steel RHS (rectangular hollow section) compression members that are partially reinforced along their lengths with welded steel plates. 28 slender column tests were carried out to investigate the effects of the slenderness ratio of the unreinforced member and the ratio of the reinforced length of the member to its entire length. In addition to the slender column tests, 14 stub-column tests were conducted to determine the basic mechanical properties of the test specimens under uniform compression. Test results show that both the compressive strength and stiffness of an RHS member can be increased significantly compared to its unreinforced counterpart even when only the central quarter of the member is reinforced. Based on the limited test data, it can be concluded that partial reinforcement is, in general, more effective in members with larger slenderness ratios. A simple design expression is also proposed to predict the compressive strength of RHS columns partially reinforced along their length with welded steel plates by modifying the provisions of AISC 360-10 to account for the partial reinforcement.

초고층 구조물에서 기둥축소에 대한 시공기간의 영향에 관한 연구 (A Study on the Effect of Construction Time in the Column Shortening in High-Rise Building)

  • 정은호;김희철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.267-274
    • /
    • 1996
  • Differential shortening of vertical members in high-rise buildings affect other structural members that have to be considered such as horizontal members and exterior cladding. of many elements which affect the total amount of shortening, different loading history mainly comes from the different construction time. Shortening of 66 story concrete columns were investigated and compared according to the different construction time, little difference was found between the total shortening of interior and that of exterior column.

  • PDF

프리훼브 콘크리트충전 각형강관기둥 이음부의 휨거동에 관한 실험적 연구 (An Experimental Study on the Behavior of Column-to-Column Connections of Prefabricated Concrete Filled Tubes)

  • 김재훈;이명재
    • 한국강구조학회 논문집
    • /
    • 제11권3호통권40호
    • /
    • pp.311-318
    • /
    • 1999
  • 콘크리트충전 강관은 콘크리트와 강관의 합성작용으로 인한 내력의 증가와 우수한 변형능력 등의 많은 장점이 있으나 현장에서 강관에 콘크리트를 타설할 때 충전된 콘크리트의 충전성에 대한 신뢰도가 떨어질 수 있다. 본 연구에서는 콘크리트의 공장타설에 의한 콘크리트충전 각형강관기둥의 프리훼브화로 콘크리트의 충전성을 확보하기 위한 목적으로 현장에서의 기둥 이음방식을 용접과 고강도 무수축 모르터를 사용한 접합방법을 사용하여 이에 대한 실험을 하였다. 본 연구는 이러한 시공법을 선택할 경우 콘크리트를 미리 타설한 기둥과 기둥을 접합할 때 그 이음부의 역학적 특성을 파악하여 실제 현장에서 실시하고 있는 방법인 현장 타설방법과 동등한 능력을 발휘할 수 있는 지를 확인하고 그 방법에 대한 영향인자를 파악하고 분석하는 기초적 연구이다.

  • PDF

전단벽의 내진보강을 위한 방법에 관한 연구 (Retrofitting Device to Increase Seismic Resistant Capactiy of Shear Walls)

  • 홍성걸;이지형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.25-28
    • /
    • 2005
  • The elastic buckling load or strength of a concentrically loaded slender metal column may be increased many times by reinforcing it with an assemblage of pretensioned stays and rigidity connected crossarm members. The complete system is herein referred to as a 'stayed column'. The purpose of the pretensioned stays and crossarm members is to introduce, at several points along the length of the column, restraint against translation and rotation and thereby decrease the effective unsupported buckling length of the column. This paper verifies that pretensioned cable of stayed column is effective for cyclic load and increases strength of shear wall against earthquake by reinforcing side of wall. Design process of stayed column which satisfies demanded capacity and ductility of wall is presented by analyzing result of experiment.

  • PDF