• Title/Summary/Keyword: column hole

Search Result 76, Processing Time 0.026 seconds

Studies on CFST column to steel beam joints using endplates and long bolts under central column removal

  • Gao, Shan;Yang, Bo;Guo, Lanhui;Xu, Man;Fu, Feng
    • Steel and Composite Structures
    • /
    • v.42 no.2
    • /
    • pp.161-172
    • /
    • 2022
  • In this paper, four specimens of CFST column joints with endplates and long bolts are tested in the scenario of progressive collapse. Flush endplate and extended endplate are both adopted in this study. The experimental results show that increasing the thickness of the endplate could improve the behavior of the joint, but delay the mobilization of catenary action. The thickness of the endplate should not be relatively thick in comparison to the diameter of the bolts, otherwise catenary action would not be mobilized or work effectively. Effective bending deformation of the endplate could help the formation and development of catenary action in the joints. The performance of flexural action in the joint would affect the formation of catenary action in the joint. Extra middle-row bolts set at the endplates and structural components set below the bottom beam flange should be used to enhance the robustness of joints. A special weld access hole between beam and endplate should be adopted to mitigate the chain damage potential of welds. It is suggested that the structural components of joints should be independent of each other to enhance the robustness of joints. Based on the component method, a formula calculating the stiffness coefficient of preloaded long bolts was proposed whose results matched well with the experimental results.

Retrofitting Effects and Structural Behavior of RC Columns Strengthened with X-Bracing Using Carbon Fiber Anchor (탄소섬유 앵커 X-브레이싱으로 보강된 철근콘크리트 기둥의 구조거동 및 내진보강 효과)

  • Sim, Jong-Sung;Lee, Kang-Seok;Kwon, Hyuck-Woo;Kim, Hyun-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.323-331
    • /
    • 2012
  • This paper presents a new strengthening method on concrete column against seismic loads for structural performance tests. An X-bracing using high performance carbon fiber threads called the "Carbon fiber anchor X-bracing system" is used to connect RC frames internally. The carbon fiber sheet is wrapped around the column to fix the top and bottom of the column after Super anchor was installed by drilling hole on the column. The structural performance was evaluated experimentally and analytically. Two types of columns specimens were made; flexure fracture scaled model and shear fracture scaled model. For the performance evaluation, cyclic loading tests were conducted on moment and shear resisting columns with and without X bracing. Test results confirmed that the bracing system installed on RC columns enhanced the strength capacity and provided adequate ductility.

Spray Characteristics of Liquid Jets in Acoustically-Forced Crossflows (음향가진된 횡단류 유동장 내 액체제트의 분무특성)

  • Song, Yoonho;Hwang, Donghyun;Ahn, Kyubok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This study investigated the acoustic forcing effects on the liquid column breakup length and the trajectory of liquid jets in crossflows. Cold-flow tests with a single hole circular nozzle injector were carried out by changing the injection pressure and acoustic forcing amplitude. Additionally, spray images were obtained at 12 phase angles to investigate the influence of the phage angle. The results revealed that the liquid column breakup lengths generally decreased under the acoustic forcing conditions, in comparison to those under the non-acoustic forcing conditions. However, they were not affected by the variation in the phase angles. On the contrary, it was found that the acoustic forcing hardly influenced the liquid column trajectories.

A Study on Deformation Capacity of High Strength Steel Beam-to-Column Connections According to Welding Detail at Beam End (보 단부 용접상세에 따른 고강도강 기둥-보 접합부의 변형능력에 관한 연구)

  • Oh, Sang Hoon;Park, Hae Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.335-348
    • /
    • 2014
  • For high-strength steel, it is difficult to be applied to flexible structural member because it have high yield ratio and low basic material's toughness. One of the great problems when using high-strength steel connections is the brittle fracture at the end of the beam member in common with general mild steel connections. In the cases of mild steel connections, it has be developed that special moment frame connection details by reinforcing structural member or improvement of welding access hole. But, it is incomplete at yet about applicability estimation of high-strength steel connections. This study is the initial step research for the applicability estimation of beam-to-column connections being applied to developed high-strength steel, HSA800. And, it studied about structural performance of the high-strength steel connections according to the details of welding access hole through full-scale test and analytical method.

Analytical Models of Beam-Column joints in a Unit Modular Frame (단위 모듈러 구조체의 보-기둥 접합부 해석 모델)

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.663-672
    • /
    • 2014
  • Recently, modular structural systems have been applicable to building construction since they can significantly reduce building construction time. They consists of several unit modular frames of which each beam-column joint employs an access hole for connecting unit modular frames. Their structural design is usually carried out under the assumption that their load-carrying mechanism is similar to that of a traditional steel moment-resisting system. In order to obtain the validation of this assumption, the cyclic characteristics of beam-column joints in a unit modular frame should be investigate. This study carried out finite element analyses(FEM) of unit modular frames to investigate the cyclic behavior of beam-column joints with the structural influence of access holes. Analysis results show that the unit modular frames present stable cyclic response with large deformation capacities and their joints are classified into partial moment connections. Also, this study develops a simple spring model for earthquake nonlinear analyses and suggests the Ramberg-Osgood hysteretic rule to capture the cyclic response of unit modular frames.

The Method of Certificating Waterproof Effect for Consecutive Column-Wall Mass in Underground (주열식 지중연속벽체의 차수효과 확인 방안)

  • Koh, Yong-IL
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.9
    • /
    • pp.5-9
    • /
    • 2017
  • On the flow of groundwater, the effect of consecutive column-wall in underground as a hydraulic barrier could be identified by conventional geotechnical methods ((1)visualiy identification of wall mass after underground excavating, (2)uniaxial compressive strength test for core of wall mass in underground, (3)in-situ permeability test in the hole after coring wall mass). However, for the cut off the leakage or infiltration of very high concentrated leachate from the waste landfill or the contaminated groundwater, the waterproof effect of consecutive column-wall in underground should be verified more objectively, by in-situ measuring of pH, temperature and salinity. and by evaluating of their consistency and similarity throughout analyzing the characteristics of basic components and their profiles through the series of chemical experiments. Furthermore, its waterproof effect could be verified additionally throughout deciding the similarity more simply by comparing the general distribution patterns including the difference of high and low peaks from the chromatograms using GC-MS for surrounding groundwater.

Effect of Various Parameters on Stress Distribution around Holes in Mechanically Fastened Composite Laminates (기계적으로 체결된 복합재료 평판에서 다양한 인자의 영향에 따른 원공 주위의 응력분포)

  • Choi Jae-Min;Chun Heoung-Jae;Byun Joon-Hyung
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.9-18
    • /
    • 2005
  • With the wide applications of fiber-reinforced composite material in aero-structures and mechanical parts, the design of composite joints have become a very important research area because the joints are often the weakest areas in composite structures. This paper presents an analytical study of the stress distributions in mechanically single-fastened and multi-fastened composite laminates. The finite element models which treat the pin and hole contact problem using a contact stress analysis are described. A dimensionless stress concentration factor is used to compare the stress distributions in composite laminates quantitatively In the case of single-pin loaded composite laminate, the effects of stacking sequence, the ratio of a hole diameter and the width of a laminate (W/D ratio), the ratio of hole diameter and distance from edge to hole (E/D ratio), friction coefficient and clamping force are considered. In the case of multi-pin loaded composite laminate, the influence of the number of pins, pitch distance, number of rows, row spacing and hole pattern are considered. The results show that P/D ratio and E/D ratio affect more on stress distributions near the hole boundary than the other factors. In the case of multi-pin loaded composite laminate, the stress concentration in the double column case is better than the other cases of multi-pin loaded composite laminate.

Testing the Geometry of AGN Tori through the Fraction of Optically-Selected Type 1 AGNs

  • Khim, Honggeun;Yi, Sukyoung K.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.37.2-38
    • /
    • 2015
  • According to the unified model of AGNs, type 1 and 2 AGNs are intrinsically the same objects but seem different due to an obscuring matter which can block lights from the central engine of the AGN depending on the viewing angle. The obscuring object is thought to be shaped in a toroidal form and thus the geometry of tori of AGNs is an important factor to determine the fraction of type 1 (or type 2) AGNs. Oh et al. (2015) provides a new catalog of type 1 AGNs from SDSS DR7 in the nearby universe (z < 0.2) and it contains nearly 50% more type 1 AGNs than previously known. Using this new catalog, we test the fraction of type 1 AGNs along the black hole mass (MBH) and the bolometric luminosity of AGNs (Lbol), which are regarded as key parameters of the AGNs. First of all, because the methods to derive the black hole mass and the bolometric luminosity bear uncertainties, we test how the different methods lead to different values of type 1 fraction. We found that the fraction of type 1 AGNs varies with both MBH and Lbol. The extensively-studied, "receding torus model" can only explain the trend along Lbol and hence fails to explain the trend. To understand the new trend, we test the geometry of the torus based on the "clumpy torus model". We present our results on the basic properties of the torus such as a column density or opening angle and compare with those from previous studies based on other wavelengths (e.g. Infrared or X-ray).

  • PDF

Effect of Operating Condition of Stripping Process on Ammonia Removal for Pre-treatment of Swine Wastewater (축산폐수 전처리를 위한 암모니아 탈기공정의 운전조건이 암모니아 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.86-92
    • /
    • 2004
  • Lab-scale experiments have been carried out to investigate ammonia stripping with a modified spray tower for removing ammonia nitrogen from swine wastewater. The operating conditions such as initial pH, temperature, air flow, hole size of distributor determining the diameter of water drops, and influent solids concentration were closely examined focusing on removal efficiency of ammonia. As a result of the experiment, in order to achieve high rate of ammonia removal by the air stripping system, the air flow rate must be supplied at high rate with sufficiently high initial pH, temperature. The optimum operating condition to meet the residual ammonia concentration of 300 mg/L was the initial pH of 11.0 at $35^{\circ}C$ with the air flow rate of 20 L/min. It also showed that the smaller hole size is, the higher removal rate of ammonia is expected. However, when used a small sized distributor (2 mm), the flooding problem at the upper column occurred due to clogging of the hole. With regard to the influent solids concentration, it was showed that the lower concentration of solids, the higher removal rate of ammonia. The removal of particulate materials in influent led to improve the removal efficiency of ammonia, rather than to control the operating condition including initial pH, temperature, and air flow. The empirical correlation between KLa and operating parameters would be driven as, $K_{La}=(0.0003T-0.0047){\cdot}G^{0.3926}{\cdot}L^{-0.5169}{\cdot}C^{-0. 1849}$. The calculated $K_{La}$ from proposed formula can be used effectively to estimate the optimum reaction time and to calculate the volume of modified spray tower system.

BAT AGN Spectroscopic Survey - The parsec scale jet properties of the ultra hard X-ray selected local AGNs

  • Baek, Junhyun;Chung, Aeree;Schawinski, Kevin;Oh, Kyuseok;Wong, Ivy;Koss, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • We have conducted a 22 GHz very long baseline interferometry (VLBI) survey of 281 local (z < 0.05) active galactic nuclei (AGNs) selected from the Swift Burst Alert Telescope (BAT) 70-month ultra hard X-ray (14-195 keV) catalog. The main goal is to investigate the relation between the strengths of black hole accretion and the parsec-scale nuclear jet, which is expected to tightly correlate but has not been observationally confirmed yet. The BAT AGN Spectroscopic Survey (BASS) provides the least biased AGN sample against obscuration including both Seyfert types, hence it makes an ideal parent sample for studying the nuclear jet properties of an overall AGN population. Using the Korean VLBI Network (KVN), the KVN and VERA Array (KaVA), and the Very Long Baseline Array (VLBA), we observed 281 objects with a 22 GHz flux > 30 mJy, detecting 11 targets (~4% of VLBI detection rate). This implies that the fraction of X-ray AGNs which are currently ejecting a strong nuclear jet is very small. Although our 11 sources span a wide range of pc-scale morphological types, from compact to complex, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our finding may indicate that the power of nuclear jet is directly responsible for the amount of black hole accretion. We also have probed the fundamental plane of black hole activity in VLBI scale (e.g., few milli-arcsecond). The results from our high-frequency VLBI radio study support that the change of jet luminosity and size follows what is predicted by the AGN evolution scenario based on the Eddington ratio (ƛ$_{Edd}$) - column density ($N_H$) plane, proposed by a previous study.

  • PDF