• Title/Summary/Keyword: column/wall

Search Result 412, Processing Time 0.021 seconds

Containing Heavy Metal Contaminants Using Soil-Cement Column Barrier (심층혼합기둥체 차수벽을 이용한 중금속 오염물질의 이동 제어)

  • 정문경;천찬란;이주형;김강석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.821-826
    • /
    • 2003
  • Laboratory experiments were peformed to understand physical properties of soil-cement column under the influence of acidic flow including metal contaminants and its retaining capacity against metal migration. The contaminant used in this study was nitric acid with Cu and Cd. The Permeability of soil-cement column decreased when pH of the column began to drop below 12. Decreases in pH led to significant reduction of compressive strength of clayey soil-cement specimen, while relatively marginal reduction for sandy soil-cement specimen. The metal contaminants did not leachate from soil-cement column until pH of soil-cement dropped below 7∼8 for Cu and 9∼10 for Cd. Metal contaminants were precipitated and trapped inside the soil-cement column at pHs higher than those mentioned as verified with metal analysis and visual inspection. This indicated that soil-cement column not only performs well as a cut-off wall, but also helps alleviating the level of contamination of the surrounding environment.

  • PDF

Seismic Performance Evaluation of Flat Column Dry Wall System and Wall Slab System Structures (무량복합 및 벽식 구조시스템의 내진성능평가)

  • Kang, Hyungoo;Lee, Minhee;Kim, Jinkoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.259-266
    • /
    • 2012
  • In this paper the seismic performance of a flat plate wall system structure was evaluated based on the ATC-63 approach, and the results were compared with those of a wall slab structure having the same size. As analysis model structures, a twelve story flat plate wall structure and a wall slab structure were designed based on the KBC-2009, and their seismic performances and collapse behaviors were evaluated by nonlinear static and incremental dynamic analyses(IDA). It was observed that the flat plate wall structure was designed with smaller amount of reinforced concrete, and showed slightly larger displacement response compared with those of the wall slab structure. The collapse margin ratios of the two structures obtained from the incremental dynamic analyses satisfied the limit states specified in the ATC-63, and the structures turned out to have enough capacity to resist the design level seismic load.

Analysis on the Flexural Behavior of Existing Reinforced Concrete Beam-Column Structures Infilled with U-Type Precast Wall Panel (U형 프리캐스트 콘크리트 벽패널로 채운 기존 철근 콘크리트 보-기둥 구조물의 휨 거동 분석)

  • Son, Guk-Won;Yu, Sung-Young;Lim, Cheol-Woo;Ju, Ho-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.5
    • /
    • pp.56-66
    • /
    • 2015
  • This study aims at developing a new seismic resistant method by using precast concrete wall panels for existing low-rise, reinforced concrete beam-column buildings such as school buildings. Three quasi-static hysteresis loading tests were performed on one unreinforced beam-column specimen and two reinforced specimens with U-type precast wall panels. Seismic resistant test of anchored and welded steel plate connections manifested an average of 2.8 times increase in the maximum loading (average 591.8 kN) in comparison to unreinforced beam-column specimen. The maximum drift ratios were also shown between 1.4% and 2.7%. An analytical study was performed while assuming the RC column on the right side and the vertical element of the reinforced PC panel to behave in completely composite manner and the RC column on the left side and PC panel to behave in completely non-composite manner when loading was exerted from upper right end of RC frame of specimen to its left side. It was found with the assumptions that the overall flexural behavior in principle agreed with the experimental result.

A Study on the Transformation of Openings in MyungRyun-Dangs of HyangGyo Architecture Located in Kyungbuk Province - Focused on the partition wall between Daechung and Bang - (경북지역 향교건축(鄕校建築) 명륜당(明倫堂)의 개구부(開口部) 변천(變遷)에 관한 연구 -대청(大廳)과 방(房) 사이의 경계벽(境界壁)을 중심으로-)

  • Chung, Myung-Sup;Kim, Il-Jin
    • Journal of architectural history
    • /
    • v.1 no.1 s.1
    • /
    • pp.33-43
    • /
    • 1992
  • The purpose of this study is to investigate the transformation of openings installed on the partition wall between Daechung and Bang, through the case study on MyungRyunDangs of 19 HangGyos in Kyungbuk province. The way to carry out this study was to look through existing situations and to find out transformed traces of the openings in terms of their locations on several floor types. The transformation of the openings was analyzed chronologically into two cases of 'before 18C' and 'after 18C'. i) Before 18C ; the early type had double swing window on the front column spacing and single swing door on the rear, and the later type had swing door on the front column spacing and on openings on the rear. ii) After 18C; the earlist type was the same as the later type of 'before 18C', the next type had swing doors on both the front and the rear column spacing, and the last type had Sabunhap-swing door on the column spacing, iii) Through those transformations, the windows gradually replaced by the doors in the openings.

  • PDF

Development of Beam-Column Connection for The New Apartment Structural System (장수명 공동주택용 보-기둥 접합부 시공방법 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Kim, Sun-Kuk;Park, Seon-Chee;Yun, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.145-151
    • /
    • 2010
  • Bearing wall system was used extensively in most multi-residential apartment buildings in Korea. However, bearing wall apartments have the lack of architectural plan flexibility, remodelling-incompatible, causing serious economic losses in terms of construction waste. Recently, many researchers have studied the use of Rahmen structure as a potential alternative. The beam-column connection in the paper for long-life apartment housing forms connection of a Rahmen structure utilizing the advantages of steel and reinforced concrete. In addition, reduction of cast-in place concrete and construction schedule is expected by using precast concrete. Reduction effect of quantity decreased construction costs and $CO_2$ emission of key construction materials. However, verifying the feasibility of new construction method entails numerous challenges. Accordingly, the purpose of this study is to analyze the construction feasibility of sleeve, coupler, and pressure welding connections for long-life apartment building structure. A 3D modeling software was used to perform the analysis, and a real scale model was created to verify the results of construction feasibility. By verifying the construction feasibility of beam-column connections, this study will contribute to the efficient application of these methods on construction sites.

Seismic Performance Evaluation of School Building Short Column Effect (끼움벽과 단주효과를 고려한 학교건축물의 내진성능평가)

  • Ju, Chang-Gil;Han, Ju-Yeon;Park, Tae-Won
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.21 no.2
    • /
    • pp.33-39
    • /
    • 2014
  • In the case of low-rise buildings in seismic performance evaluation, lateral force resistance of the pillars affects the seismic performance of the building. Evaluation of the seismic performance of the column is determined by the holding performance is evaluated by comparing the shear strength and bending strength it was destroyed bylow intensity. In case of the school building, in order to install the large windows for ventilation and lighting of the partition walls are located between the pillars. The case of the pillars of these, shear failure occurs in the event of an earthquake is often, in the seismic performance evaluation, partition wall and the wall of the shim is evaluated ignoring, pillar of the general pillars If you have to calculate the results of the seismic performance distorted that are destroyed by bending behavior can be evaluated as often. Results of the study, when assessed by distinguishing the effective length of the column, it was found that when a seismic load is applied, it is possible to accurately predict the failure mode, reliable results of seismic performance evaluation of the school building.

A Study on the Change of Free Surface Vortex according to Intake Conditions in the Pump Sump (펌프 섬프장 흡입 조건에 따른 자유표면 보텍스 변동에 관한 연구)

  • Park, Young-Kyu;Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.74-79
    • /
    • 2011
  • In this study the change of free surface vortex is represented at different times according to height of water and with or without curtain wall installation. The air volume fraction is investigated at each condition of water level and the influence about creation of vortex is analyzed. The height of sump intake is taken as 100mm and the water level is divided into 5 steps. The sump model is the TSJ model and the curtain wall is applied by HI standard of America. The results shows that the free surface vortex can be identified on the isotropic surface at air volume fraction 1%~5% and the vortices make an air column from the free surface to the sump intake and are created and destroyed repeatedly. In the higher water level, less air is absorbed into the intake pipe. After curtain wall installation, the suction rate of the air volume fraction is decreased by 6.7%. The result of the vortex motion according to time, works on a cycle.

A basic study on Visual judgment method for the Dent of Lightweight wall surface (경량벽체 표면의 패임에 대한 시각적 판단방법에 관한 기초적 연구)

  • Kim, Jin-Sik;Shin, Yun-Ho;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.36-37
    • /
    • 2015
  • Recently, there has been a rapid increase in demand for lightweight walls for their use as interior partitions, as types of structure have gradually changed from shear wall structures to column structures or flat plate column wall systems. The lack of resisting force in lightweight walls is found by measuring the depth of dents in impact resistance tests, but it is not a direct factor of impact resistance. However, in the user's position, dents of over a certain size are clearly a factor that visually reminds the need for repair. In this study, we reviewed relative methods of assessment of the need for repair based on the visual means of determination (sensory test) on the dents on lightweight walls. Dents were found to stand out starting from depths of about 4mm, and the depth of roughly 5mm was found to be the criterion for determining the necessity of repair for men, while it was 4mm for women.

  • PDF

Characterization of yeast cell wall lytic enzyme from Fusarium moniliforme (Fusarium moniliforme이 생산하는 효모세포벽 분해효소의 특성)

  • 장판식;박관화;이계호
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.467-471
    • /
    • 1986
  • Yeast cell wall lytic enzyme was purified from Fusarium moniliforme by ammonium sulfate fractionation and gel column chromatography. The lytic activity was found to consist of three enzyme activities which were resolved on Sephadex G-100. The first peak on chromatogram exhibited proteolytic, lytic and laminarinase activities, and the second had both lytic and laminarinase activities, whereas the third peak was shown to contain lytic activity only. Three enzyme activities showed the synergistic effect and reducing agents accelerated the yeast roil wall lysis. This indicates that lytic, proteolytic and laminarinase activity acted cooperatively in the lysis of intact cells. Tannic acid precipitate of crude enzyme constituted of three enzyme activities had a high lytic activity on viable yeast cell and has proved useful in yeast protoplast formation.

  • PDF

Nonlinear interaction behaviour of infilled frame-isolated footings-soil system subjected to seismic loading

  • Agrawal, Ramakant;Hora, M.S.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.85-107
    • /
    • 2012
  • The building frame and its foundation along with the soil on which it rests, together constitute a complete structural system. In the conventional analysis, a structure is analysed as an independent frame assuming unyielding supports and the interactive response of soil-foundation is disregarded. This kind of analysis does not provide realistic behaviour and sometimes may cause failure of the structure. Also, the conventional analysis considers infill wall as non-structural elements and ignores its interaction with the bounding frame. In fact, the infill wall provides lateral stiffness and thus plays vital role in resisting the seismic forces. Thus, it is essential to consider its effect especially in case of high rise buildings. In the present research work the building frame, infill wall, isolated column footings (open foundation) and soil mass are considered to act as a single integral compatible structural unit to predict the nonlinear interaction behaviour of the composite system under seismic forces. The coupled isoparametric finite-infinite elements have been used for modelling of the interaction system. The material of the frame, infill and column footings has been assumed to follow perfectly linear elastic relationship whereas the well known hyperbolic soil model is used to account for the nonlinearity of the soil mass.