• Title/Summary/Keyword: colossal permittivity

Search Result 1, Processing Time 0.013 seconds

Effect of (Al, Nb) Co-Doping on the Complex Dielectric Properties and Electric Modulus of BaTiO3-Based Ceramics

  • Ziheng Huang;Ruifeng Niu; Depeng Wang;Weitian Wang
    • Korean Journal of Materials Research
    • /
    • v.34 no.7
    • /
    • pp.321-329
    • /
    • 2024
  • In this work, a series of BaTiO3-based ceramic materials, Ba(Al0.5Nb0.5)xTi1-xO3 (x = 0, 0.04, 0.06, 0.08), were synthesized using a standard solid-state reaction technique. X-ray diffraction profiles indicated that the Al+Nb co-doping into BaTiO3 does not change the crystal structure significantly with a doping concentration up to 8 %. The doping ions exist in Al3+ and Nb5+ chemical states, as revealed by X-ray photoelectron spectroscopy. The frequency-dependent complex dielectric properties and electric modulus were studied in the temperature range of 100~380 K. A colossal dielectric permittivity (>1.5 × 104) and low dielectric loss (<0.01) were demonstrated at the optimal dopant concentration x = 0.04. The observed dielectric behavior of Ba(Al0.5Nb0.5)xTi1-xO3 ceramics can be attributed to the Universal Dielectric Response. The complex electric modulus spectra indicated the grains exhibited a significant decrease in capacitance and permittivity with increasing co-doping concentration. Our results provide insight into the roles of donor and acceptor co-doping on the properties of BaTiO3-based ceramics, which is important for dielectric and energy storage applications.