• Title/Summary/Keyword: colorectal cancer (CRC)

Search Result 320, Processing Time 0.02 seconds

Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study

  • Kim, Eunjung;Kim, Dan-Bi;Park, Jae-Yong
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.57-61
    • /
    • 2016
  • Dietary proteins influence colorectal cancer (CRC) risk, depending on their quantity and quality. Here, using pyrosequencing, we compared the fecal microbiota composition in Balb/c mice fed either a normal protein/carbohydrate diet (ND, 20% casein and 68% carbohydrate) or a high-protein/low-carbohydrate diet (HPLCD, 30% casein and 57% carbohydrate). The results showed that HPLCD feeding for 2 weeks reduced the diversity and altered the composition of the microbiota compared with the ND mice, which included a decrease in the proportion of the family Lachnospiraceae and Ruminococcaceae and increases in the proportions of the genus Bacteroides and Parabacteroides, especially the species EF09600_s and EF604598_s. Similar changes were reported in patients with inflammatory bowel disease, and in mouse models of CRC and colitis, respectively. This suggests that HPLCD may lead to a deleterious luminal environment and may have adverse effects on the intestinal health of individuals consuming such a diet.

Increase in dietary protein content exacerbates colonic inflammation and tumorigenesis in azoxymethane-induced mouse colon carcinogenesis

  • Tak, Ka-Hee;Ahn, Eunyeong;Kim, Eunjung
    • Nutrition Research and Practice
    • /
    • v.11 no.4
    • /
    • pp.281-289
    • /
    • 2017
  • BACKGROUND/OBJECTIVE: The incidence of colorectal cancer (CRC) has been attributed to higher intake of fat and protein. However, reports on the relationship between protein intake and CRC are inconsistent, possibly due to the complexity of diet composition. In this study, we addressed a question whether alteration of protein intake is independently associated with colonic inflammation and colon carcinogenesis. MATERIALS/METHODS: Balb/c mice were randomly divided into 4 experimental groups: 20% protein (control, 20P, 20% casein/kg diet), 10% protein (10P, 10% casein/kg diet), 30% protein (30P, 30% casein/kg diet), and 50% protein (50P, 50% casein/kg diet) diet groups and were subjected to azoxymethane-dextran sodium sulfate induced colon carcinogenesis. RESULTS: As the protein content of the diet increased, clinical signs of colitis including loss of body weight, rectal bleeding, change in stool consistency, and shortening of the colon were worsened. This was associated with a significant decrease in the survival rate of the mice, an increase in proinflammatory protein expression in the colon, and an increase in mucosal cell proliferation. Further, colon tumor multiplicity was dramatically increased in the 30P (318%) and 50P (438%) groups compared with the control (20P) group. CONCLUSIONS: These results suggest that a high protein diet stimulates colon tumor formation by increasing colonic inflammation and proliferation.

CircCOL1A2 Sponges MiR-1286 to Promote Cell Invasion and Migration of Gastric Cancer by Elevating Expression of USP10 to Downregulate RFC2 Ubiquitination Level

  • Li, Hang;Chai, Lixin;Ding, Zujun;He, Huabo
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.938-948
    • /
    • 2022
  • Gastric cancers (GC) are generally malignant tumors, occurring with high incidence and threatening public health around the world. Circular RNAs (circRNAs) play crucial roles in modulating various cancers, including GC. However, the functions of circRNAs and their regulatory mechanism in colorectal cancer (CRC) remain largely unknown. This study focuses on both the role of circCOL1A2 in CRC progression as well as its downstream molecular mechanism. Quantitative polymerase chain reaction (qPCR) and western blot were adopted for gene expression analysis. Functional experiments were performed to study the biological functions. Fluorescence in situ hybridization (FISH) and subcellular fraction assays were employed to detect the subcellular distribution. Luciferase reporter, RNA-binding protein immunoprecipitation (RIP), co-immunoprecipitation (Co-IP), RNA pull-down, and immunofluorescence (IF) and immunoprecipitation (IP) assays were used to explore the underlying mechanisms. Our results found circCOL1A2 to be not only upregulated in GC cells, but that it also propels the migration and invasion of GC cells. CircCOL1A2 functions as a competing endogenous RNA (ceRNA) by sequestering microRNA-1286 (miR-1286) to modulate ubiquitin-specific peptidase 10 (USP10), which in turn spurs the migration and invasion of GC cells by regulating RFC2. In sum, CircCOL1A2 sponges miR-1286 to promote cell invasion and migration of GC by elevating the expression of USP10 to downregulate the level of RFC2 ubiquitination. Our study offers a potential novel target for the early diagnosis and treatment of GC.

In Vitro imaging of MRI and Ultrasound for Colorectal Carcinoma (직결장암 조직의 자기공명영상과 초음파 소견에 대한 비교 연구)

  • Lee, Hwang Kyu;Jee, Keum Nahn;Hong, Sujin;Koh, Jae Hyang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2013
  • Purpose : To evaluate and compare the accuracy of magnetic resonance imaging (MRI) and ultrasound (US) for detection and estimation of invasion depth of colorectal carcinoma (CRC) by correlation with histopathologic findings in vitro, and to find out the best MR pulse sequence for accurate delineation of tumor from surrounding normal tissue. Materials and Methods: Resected specimens of CRC from 45 patients were examined about tumor detectability and invasion depth of US using high frequency (5-17 MHz) linear transducer in a tube filled with normal saline and MRI in a 8-channel quadrate head coil. The institutional review board approved this study and informed consent was waived. MRI with seven pulse sequences of in- and out-of-phases gradient echo T1 weighted images, fast spin echo T2 weighted image and its fat suppression image, fast imaging employing steady-state acquisition (FIESTA) and its fat suppression image, and diffusion weighted image (DWI) were performed. In each case, both imaging findings of MRI and US were evaluated independently for detection and estimation of invasion depth of tumor by consensus of two radiologists and were compared about diagnostic accuracy according to the histopathologic findings as reference standard. Seven MR pulse sequences were evaluated on the point of accurate delineation of tumor from surrounding normal tissue in each specimen. Results: In specimens of CRC, both imaging modalities of MRI (91.1%) and US (86.7%) showed relatively high diagnostic accuracy to detect tumor and evaluate invasion depth of tumor. In early CRC, diagnostic accuracy of US was 87.5% and that of MRI was 75.0%. There was no statistically significant difference between two imaging modalities (p > 0.05). The best pulse sequence among seven MR sequences for accurate delineation of tumor from surrounding normal tissue in each specimen of CRC was fast spin echo T2 weighted image. Conclusion: MRI and US show relatively high diagnostic accuracy to detect tumor and evaluate invasion depth of resected specimen of CRC. The most excellent pulse sequence of MRI for accurate delineation of tumor from surrounding normal tissue in CRC is fast spin echo T2 weighted image.

Inhibition of COX-2 Impairs Colon Cancer Liver Metastasis through Reduced Stromal Cell Reaction

  • Herrero, Alba;Benedicto, Aitor;Romayor, Irene;Olaso, Elvira;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.342-351
    • /
    • 2021
  • Liver colonization is initiated through the interplay between tumor cells and adhesion molecules present in liver sinusoidal endothelial cells (LSECs). This crosstalk stimulates tumor COX-2 upregulation and PGE2 secretion. To elucidate the role of the LSEC intercellular adhesion molecule-1 (ICAM-1) in the prometastatic response exerted by tumor and stromal COX-2, we utilized celecoxib (CLX) as a COX-2 inhibitory agent. We analyzed the in vitro proliferative and secretory responses of murine C26 colorectal cancer (CRC) cells to soluble ICAM-1 (sICAM-1), cultured alone or with LSECs, and their effect on LSEC and hepatic stellate cell (HSC) migration and in vivo liver metastasis. CLX reduced sICAM-1-stimulated COX-2 activation and PGE2 secretion in C26 cells cultured alone or cocultured with LSECs. Moreover, CLX abrogated sICAM-1-induced C26 cell proliferation and C26 secretion of promigratory factors for LSECs and HSCs. Interestingly, CLX reduced the protumoral response of HSC, reducing their migratory potential when stimulated with C26 secretomes and impairing their secretion of chemotactic factors for LSECs and C26 cells and proliferative factors for C26 cells. In vivo, CLX abrogated the prometastatic ability of sICAM-1-activated C26 cells while reducing liver metastasis. COX-2 inhibition blocked the creation of a favorable tumor microenvironment (TME) by hindering the intratumoral recruitment of activated HSCs and macrophages in addition to the accumulation of fibrillar collagen. These results point to COX-2 being a key modulator of processes initiated by host ICAM-1 during tumor cell/LSEC/HSC crosstalk, leading to the creation of a prometastatic TME in the liver.

Clinical Features of Oxaliplatin Induced Hypersensitivity Reactions and Therapeutic Approaches

  • Bano, Nusrat;Najam, Rahila;Qazi, Faaiza;Mateen, Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.1637-1641
    • /
    • 2016
  • Oxaliplatin, a third generation novel platinum compound is the most effective first line chemotherapeutic agent for colorectal cancer (CRC) in combination with 5FU and leucovorin. It is indicated for pancreatic, gastric and testicular cancers combined with bevacuzimab, capecitabine, irinotecan and other cytotoxic agents. However, moderate to severe hypersensitivity reactions (HSR) during or after oxaliplatin infusion usually require cessation of chemotherapy or substitution of the key therapeutic drug which largely interferes with improved patient prognosis. This mini- review showcases recent and accepted opinions/approaches in oxaliplatin induced HSR management. Physicians and oncologists have varying attitudes regarding the decision to rechallenge the patient after an HSR experience, efficacy of desensitization protocols, effectiveness and selection of drugs for premedication and possibilities of cross sensitivity to other platinum agents (e.g. carboplatin). A brief insight into underlying molecular mechanisms and clinical manifestations of oxaliplatin induced HSR is offered. We have also discussed the management of oxaliplatin induced HSR and risk stratification for a successful and complete chemotherapeutic plan.

Dietary zinc inhibits the formation of colonic preneoplastic lesion induced by azoxymethane and dextran sodium sulfate in mice

  • Park, Hyunji;Kim, Dang Young;Kang, Bong Su;Yoon, Ja Seon;Jeong, Jae-Hwang;Nam, Sang Yoon;Yun, Young Won;Kim, Jong-Soo;Lee, Beom Jun
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.115-124
    • /
    • 2012
  • Colorectal cancer (CRC) is one of the leading causes of cancer death in western countries or in the developed countries. Zinc intake has been associated with decreased risk of CRC. We investigated the effect of zinc on the formation of colonic aberrant crypt foci (ACF) induced by azoxymethane followed by dextran sodium sulfate in mice. Five-week old ICR mice were fed with the different zinc levels (0.01, 0.1, 1 ppm) for 12 weeks. The numbers of ACF were measured in the colonic mucosa. The ACF number of HZn group was significantly low compared with LZn group or MZn group. Cytosolic superoxide dismutase activity was the highest in HZn group, while thiobarbituric acid reactive substance level for lipid peroxidation was the highest in LZn group. There was no difference in number of PCNA-positive proliferative cells among the groups. TUNEL-positive apoptotic cells were increased in HZn group compared with LZn group. The HZn group exhibited a decrease of ${\beta}$-catenin immunostaining areas compared with the LZn or MZn group. These findings indicate that dietary zinc might exert a protecting effect against colon carcinogenesis by inhibiting the development of ACF in the mice.

Analyses of Multiple Factors for Determination of "Selected Patients" Who Should Receive Rechallenge Treatment in Metastatic Colorectal Cancer: a Retrospective Study from Turkey

  • Ozaslan, Ersin;Duran, Ayse Ocak;Bozkurt, Oktay;Inanc, Mevlude;Ucar, Mahmut;Berk, Veli;Karaca, Halit;Elmali, Ferhan;Ozkan, Metin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2833-2838
    • /
    • 2015
  • Background: Repeating a prior chemotherapy (rechallenge therapy) is an option for selected patients with metastatic colorectal cancer, but there is very little evidence in the literature for this approach. Thus, we reviewed our registry to evaluate prognostic factors and survival of patients who received irinotecan and oxaliplatin-based regimens as rechallenge third and fourth-line therapy. Materials and Methods: Patients who received irinotecan-based or oxaliplatin-base regimen as first-line had been rechallenged with third-line or fourth-line therapy. These patients were selected from the database of Turkish mCRC registry archives between October 2006 and June 2013 and evaluated retrospectively for factors effecting progression free survival (PFS) and overall survival (OS) by the Kaplan-Meire and Cox-regression methods. Results: Thirty-nine patients were enrolled. The median duration of follow-up was 36 months (14-68 months). Thirty-one patients (76%) died during follow-up. In terms of rechallenge treatments, 29 patients had received third-line and 10 patients had received fourth-line. Response rate (RR) was found to be 12.9%, with stable disease in 19 (48.7%) patients. The median PFS was 6 months (95%CI=4.64-7.35 months) and the median OS was 11 months (95%CI=8.31-13.68 months). The factors effecting survival (PFS and OS) were only being PFS after first-line chemotherapy ${\geq}12months$ (p=0.007, 95% CI=1.75-35.22 and p=0.004, 95%CI=1.44-7.11), both in univariate and multivariate analyses. Conclusions: This study indicates that rechallenge treatment could be a good option as a third or later line therapy in patients who had ${\geq}12months$ PFS onreceiving first line therapy.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Differential effects of various dietary proteins on dextran sulfate sodium-induced colitis in mice

  • Eunyeong, Ahn;Hyejin, Jeong;Eunjung, Kim
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.700-715
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Chronic colitis is a risk factor for colorectal cancer (CRC) development in both animals and humans. Previously, we reported that a diet rich in protein (with casein as the protein source) significantly increased the risk of mouse CRC development in a dose-dependent manner. In this study, we investigated the effects of different protein sources on the risk of colitis development. MATERIALS/METHODS: Balb/c mice were divided into 7 experimental groups: 20% casein (20C), 20C-dextran sulfate sodium (DSS), 40% casein-DSS (40CD), 40% whey protein-DSS (40WD), 40% soy protein-DSS (40SD), 40% white meat-DSS (40WMD), and 40% red meat-DSS (40RMD). Mice were fed an experimental diet for 4 wk and received 3% DSS in their drinking water for 6 days during the 4th wk of the experimental period. RESULTS: Compared to other groups, the 40CD group showed the most aggravated colitis with increased disease activity and inflammatory markers. In the 40RMD group, interleukin (IL)-6 levels were the highest among all the groups. The 40SD group showed conflicting effects, for example, elevated mortality and disease activity but decreased nitric oxide (NO) levels. The 40WD group showed attenuated colitis with increased IL-10 levels and decreased NO levels. The 40WMD group showed conflicting effects, including decreased NO levels and elevated fecal lipocalin-2 and IL-6 levels. CONCLUSIONS: These results suggest that, at levels of 40% in the diet, casein and red meat exacerbate colitis, whereas whey protein mitigates it the most effectively.